

Build a supercharged data foundation
and cut through the noise of data
development with Coalesce.

Deliver data projects
10x faster – without
creating tech debt

Discover the future of data
transformations at Coalesce.io

https://coalesce.io

With Early Release ebooks, you get books
in their earliest form—the author’s raw and

unedited content as they write—so you can take
advantage of these technologies long before the

official release of these titles.

Josh Hall

Accelerating Data Pipeline
Development

Deliver Data Projects Faster Without
Creating Tech Debt

979-8-341-60874-0

[LSI]

Accelerating Data Pipeline Development
by Josh Hall

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Aaron Black
Development Editor: Melissa Potter
Production Editor: Kristen Brown

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Kate Dullea

September 2025: First Edition

Revision History for the Early Release
2025-03-11: First Release
2025-04-02: Second Release
2025-04-24: Third Release
2025-05-22: Fourth Release
2025-06-06: Fifth Release

See http://oreilly.com/catalog/errata.csp?isbn=9798341608740 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Accelerating Data
Pipeline Development, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Coalesce. See our state‐
ment of editorial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9798341608740
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Brief Table of Contents (Not Yet Final). vii

1. Getting Started in Coalesce. 1
The User Interface 2
Projects 7
Workspaces 10
Storage 13
Adding Users 15
Adding Data Sources 16
Building on Your Foundation 18

2. Coalesce Core Concepts. 19
Column-aware Architecture 20
Nodes 23
The Pipeline Development Approach 31
The Development Workflow 33
Knowledge Sync Complete 34

3. Building Data Pipelines in Coalesce. 35
The Build Interface 36
Adding Data Sources 38
Adding Nodes to Your Pipeline 41
Data Transformations in Coalesce 55
Joins 58
Bulk Editing 61
Data Transformation in Process 64

v

4. Managing Data Pipelines in Coalesce. 65
Managing Nodes Using Views 66
Subgraphs 70
Selector Queries 73
Column Level Lineage 74
The Problem Scanner 77
Version Control 79
Macros and Parameters 85
Testing 89
Jobs 90
Environments 91
The Makings Of A Pro 94

5. Coalesce Security and Data Governance. 95
Account Access 96
Role Based Access Control 99
Coalesce SQL Execution 104
Documentation 105
Peace of Mind 108

6. Modeling Patterns and Use Cases in Coalesce. 109
Migration: From Legacy to Modern 110
Modeling 113
Wrapping Up 116

7. Wrapping It All Up with the Coalesce Catalog. 119
Getting Set Up with Coalesce Catalog 120
Metadata Management and Data Lineage 122
Collaboration and Data Discovery 126
Using the AI Assistant for Data Discovery and Exploration 128
From Chaos to Clarity 130

vi | Table of Contents

Brief Table of Contents
(Not Yet Final)

Chapter 1: Getting Started in Coalesce (available)

Chapter 2: Coalesce Core Concepts (available)

Chapter 3: Building Data Pipelines in Coalesce (available)

Chapter 4: Managing Data Pipelines in Coalesce (available)

Chapter 5: Coalesce Security and Data Governance (available)

Chapter 6: Modeling Patterns and Use Cases in Coalesce (available)

Chapter 7: Wrapping It All Up with the Coalesce Catalog (available)

vii

CHAPTER 1

Getting Started in Coalesce

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 1st chapter of the final book.

If you’d like to be actively involved in reviewing and commenting
on this draft, please reach out to the editor at mpotter@oreilly.com.

Just like the foundation that supports a house, Coalesce has founda‐
tional components that support your development of data products.
This chapter will lay the groundwork for the rest of this guide,
ensuring you have the tools you need to build end-to-end data
pipelines. In it, you will learn about projects and workspaces, which
are the core of the development experience in Coalesce. You will
discover how to connect Coalesce to your data platform and make
your data ready for development. You’ll also see how you can work
with the rest of your data team to build nodes for all your data
transformation needs.

Equipped with this knowledge, you’ll be able to get started develop‐
ing your data in Coalesce and have a foundational understanding
for the rest of topics discussed in this guide. Let’s start by learning
about the user interface.

1

The User Interface
Coalesce provides a graphical user interface (GUI) that enables
you to develop your data while giving you the flexibility to write
SQL. The interface is divided into different segments which provide
support for different functions throughout the data development
lifecycle. These segments include:

• The Projects Page•
• The Build Interface•
• The Deploy Interface•
• The Docs Interface•

You also have the ability to manage your Coalesce organization and
users from the user menu interface using Org and User Settings.
In this section, you’ll explore each of the segments of the Coalesce
interface.

The Projects Page
The projects page is the default landing page when logging into
Coalesce. This page will display any of your organization’s projects
that you have access to. Projects in Coalesce give you the flexibility
to organize your data initiatives for a specific purpose of team goal,
as shown in Figure 1-1. Don’t worry if you can’t make out all the
details here, we’ll dig into these screens in more detail shortly.

Figure 1-1. The projects page of Coalesce.

2 | Chapter 1: Getting Started in Coalesce

The Build Interface
The build interface is where you will spend time developing your
data products and building node graphs and pipelines as shown in
Figure 1-2. It can be accessed by launching any workspace from the
projects page. Users can easily manage each aspect of a data pipeline
from the build interface, including creating jobs and subgraphs.

Figure 1-2. The build interface in Coalesce displaying various nodes.
Don’t worry if you can’t make out all the details here, we’ll dig into
these screens in more detail shortly

The Deploy Interface
The deploy interface is where you can deploy your data projects
from the desired state in your git repository, and see a history of
your pipeline’s deployments and refreshes from the feed on the right
side of the screen as shown in Figure 1-3. This interface contains a
dashboard for any environment you create, allowing you to see the
current status of job runs as well as allowing you to schedule job
refreshes.

The User Interface | 3

Figure 1-3. The deploy interface where you can manage and monitor
your data projects. Don’t worry if you can’t make out all the details
here, we’ll dig into these screens in more detail shortly

The Docs Interface
The docs interface captures automatic, real-time documentation
about each project and environment in your Coalesce organization.
You can find information about each project created, such as the
database and schema, column names and descriptions, and even
data definition language (DDL) and data manipulation language
(DML) as shown in Figure 1-4.

Figure 1-4. The docs interface displaying all of the workspaces and
environments that have been documented

4 | Chapter 1: Getting Started in Coalesce

The User Menu
As a user within Coalesce, you will have access to the user menu.
The user menu can be accessed in the upper right hand corner,
denoted by the user icon as shown in Figure 1-5. Within the user
menu are the Organization and User settings of your organization.

The User Interface | 5

Figure 1-5. The user menu opened to display User and Organization
settings

6 | Chapter 1: Getting Started in Coalesce

Organization settings provide management access to the following
controls for your Coalesce organization:

• User management – adding, removing, or modifying users•
• Single Sign-On•
• Preferences – such as the Coalesce parser sample size•

User settings provide you with the ability to manage your individual
user with the following controls:

• Configuration of your Git settings•
• Support information about your Coalesce account•
• Changing your password•

With the ability to navigate the Coalesce interface, you can now dive
into setting up your first Coalesce project for developing your data.

Projects
You learned about the projects page in the previous section, but
now it’s time to take a step further to learn more about projects.
Projects give you the ability to organize your data development
in a structured way, similar to how folders allow you to organize
documents in Google Drive. In this section, you will learn how to
use projects, as well as how to set up a project for your own data
development.

The Purpose of Projects
Projects provide multiple advantages for data teams developing
their data. The first of these advantages is architectural. By utiliz‐
ing projects, you can decide how your data development processes
should be architected.

For some data teams, this means organizing projects by the initia‐
tives that the data team is working on. Others may want to imple‐
ment a data mesh pattern and use projects to separate each domain
of the business. Still others may want different teams within the
organization to be managed through separate projects as shown in
Figure 1-6. Regardless of the organization pattern, you must have at
least one project in order to develop your data.

Projects | 7

Figure 1-6. Projects in Coalesce managed by the team working on the
project

Another advantage of projects is version control. Each project in
Coalesce is integrated with your version control system such as
GitHub. You will integrate a git repository for each project that you
create. This allows each project to be managed separately from the
others while providing version control for the specific purpose of
the project.

While it is possible to skip this integration, your development expe‐
rience will be limited to a singular workspace. Coalesce does not
recommend developing this way.

The last advantage we’ll discuss is role based access control, or
RBAC. RBAC allows your Coalesce administrators to determine
which users should have access to which projects, as well as deter‐
mining which level of access each user should have. This provides
granular control for all of your data development initiatives.

8 | Chapter 1: Getting Started in Coalesce

How to Set Up a Project
Now that you know when to use a project, let’s talk about how to
set one up. If you have never configured a Git account in Coalesce
before, you will need to do this first. To configure a Git account in
Coalesce, navigate to the user settings. Within the version control
section, select Add New Account. You can follow the instructions on
the setup modal to provide the information necessary to configure
your Git account as shown in Figure 1-7.

Figure 1-7. The Git setup modal in Coalesce

From the projects page, click on the plus + button next to the
Projects header. This will open the project configuration workflow.
Here you’ll give your project a meaningful name, select the data
platform you want to connect Coalesce to, and provide any descrip‐
tive information as shown in Figure 1-8.

Projects | 9

Figure 1-8. The Project set up workflow where you select your data
platform and supply a name and description

Next, you’ll need to provide the Git repository URL from your
version control system. You can skip this step to create a project
without version control, but I don’t recommend this. Once you
supply the Git repository URL, you can select a Git account config‐
uration from Coalesce. Once you have selected your Git account,
your setup is complete and you can complete the project setup
workflow.

Workspaces
With your new knowledge of projects, you can now move on
to setting up a workspace for your data development projects.
A workspace is a sandbox environment where you can complete
the development of your data. Each workspace has its own graph,
storage locations, macros, node types, data platform connection
configuration, and Git branch – all of which you will learn about
in subsequent sections. You can create multiple workspaces to work
on different tasks and merge them into your codebase. In order to
begin building your data pipelines, you will need to connect your
workspace to your data platform. Let’s go over how to do that now.

Within any project, select the Create Workspace button in the upper
right corner of the project – this will open the workspace creation
workflow. You will be asked for a workspace name and description.
Next, you will select the branch and commit you want to create your
new workspace from. For example, you may want to create a work‐
space from your main branch in order to design a new forecasting

10 | Chapter 1: Getting Started in Coalesce

pipeline in your data warehouse. Once you have selected the branch
and commit, you will supply the name of the new branch you wish
to create and finish the creation of the workspace.

With a workspace created, you can now connect it to your data
platform. By clicking on the gear cog icon next to the workspace
Launch button, you can provide the information about your data
platform connection. In the case of the Figure 1-9, this workspace
is connected to Snowflake, but Coalesce supports multiple different
data platforms.

Figure 1-9. Connecting your workspace to your data platform. In this
case, Snowflake

Coalesce supports multiple different authentication types. The two
most common are OAuth and Username and Password. Once you
have supplied Coalesce with your account information and connec‐
tion criteria, you can test the connection to your data platform.
Once successful, you are ready to map your workspace to the data
that exists in your data platform.

Once you have connected your workspace to your data platform,
you can select the blue Launch button to enter the build interface.
Before you can begin your data development in the build interface,
there are a few more configuration items to complete. You can
find these items in the Build and Workspace settings. We’ll quickly
explore each of these.

Workspaces | 11

Build Settings
The build settings page can be accessed by clicking the gear cog
icon in the lower left corner of the build interface. Within the build
settings you can manage all aspects related to development within
your workspace. This includes:

• Storage Locations and Storage Mappings•
• Development Workspaces•
• Environments•
• Macros•
• Node Types•
• Packages•

Each of these items has their own settings which can be configured
by selecting each item.

Workspace Settings
Your workspace settings provide management for the connection
to your data platform. These workspace settings can be accessed in
one of two ways. You can either select the gear icon next to the
workspace name, or select the same icon next to the workspace
in the Workspace selection from the Build Settings as shown in
Figure 1-10.

Figure 1-10. Where to open the workspace settings inside of a work‐
space

12 | Chapter 1: Getting Started in Coalesce

Now that you know where all of the settings are available in your
workspace, you can finish the final configuration of your workspace
to begin building your data pipelines.

Storage
So far you have created a project and workspace and connected the
workspace to your data platform. But now you need to tell your
workspace what data in your platform you want to develop with.
This is where storage locations and storage mappings come into
play.

Storage Locations
Storage locations are a logical representation of a database and
schema in your data platform. You can think of them as the glossary
that points to the chapters in a book. Storage locations themselves
don’t contain any data or perform any action on their own. Instead,
they act as logical containers for the databases and schemas you
want to use in your data pipeline development.

For example, you may have a database and two schemas within
that database which contain source data for a pipeline you wish to
develop. You want the results from your data pipeline to be output
in a different database and schema. In this case, you could use three
storage locations, two for the source data and one for the output or
target destination as shown in Figure 1-11.

Figure 1-11. Storage locations created to be mapped to physical desti‐
nations in your data platform

Storage locations can also be used for other use cases as well. For
example, if your organization uses a medallion architecture, you can
have a storage location for each level of your architecture i.e. bronze,
silver, gold. Or if you leverage a staging layer in your data pipelines,

Storage | 13

you could have a staging storage location where all staging tables are
created in the same location.

You will notice that there is always a default storage location. This is
the location that, unless configured otherwise, all tables in your data
pipeline will be created within by default.

It’s important to note that storage locations cannot be renamed once
they are created.

Once your storage locations are created, you can map each storage
location to a physical destination in your data platform using stor‐
age mappings.

Storage Mappings
As you just learned, storage locations are just logical containers
that can point to physical locations in your data platform. Storage
mappings are what tie your storage locations to a database and
schema in your data platform. To configure storage mappings for
your workspace, you will need to access your workspace settings and
select Storage Mappings.

Each of the storage locations you have created will show up as an
item to be mapped to your data platform. For each storage location,
you can select the database and schema that you want each to point
to as shown in Figure 1-12. Ensure that your default storage location
is mapped to a database and schema where you expect your tables to
be output.

14 | Chapter 1: Getting Started in Coalesce

Figure 1-12. Mapping physical databases and schemas to the storage
locations previously created

Storage mappings can be updated at any time from the workspace
settings. You can also add more storage locations and map them
in the same way described here. For this guide, we will be using a
fictional foodtruck company dataset for our illustrations,where our
data sources are the customer and POS data and our target storage
location is a development database and schema. We can deploy this
to a production environment later on.

Adding Users
You now have a fully configured and ready for development project
and workspace. With your data ready for development, you can add
your team into your Coalesce account to collaborate alongside them.
To add users, you will need to access the Org settings from the User
Menu. As a Coalesce administrator, you will be able to add users to
your Coalesce account and assign them appropriate roles.

Table 1-1 provides guide to user roles in Coalesce and the permis‐
sions that they contain.

Adding Users | 15

Table 1-1. Coalesce User Roles and Associated Permissions

Role Permissions Summary Recommended For
Organization
Administrator

The creator of the Coalesce App is automatically assigned
as organization administrator.
Only organization administrators can add other users,
including other organization administrators.
They have full access to all functionality in Coalesce.

Full administrative
control

Organization
Contributor

They can’t add new users to the organization.
They have access to read documentation, create API
tokens, user settings, and Git account information.
They will be able to set up a project, configure Git, add
members to projects,and oversee work.
They’ll only have access to the projects they
create themselves. If there are multiple organization
contributors, they will need to share access with the
organization contributor.

Managers who decide
how each person will
contribute to a
project.

Organization
Member

This is the default role. They can edit Git account
information, create API tokens, and read documentation.

Default Role

Now that your users are added into your workspace with the proper
permissions, your team can begin building data products by adding
data sources

Adding Data Sources
With your team ready to collaborate in Coalesce and your work‐
space ready to develop your data, you can begin adding data sources
to your graph. You can do this by launching your workspace and
selecting the plus + button in the upper left corner of the build
interface. This will open the add data sources modal, which will
display all of the storage locations you mapped your data to, and the
objects available in those locations as shown in Figure 1-13.

16 | Chapter 1: Getting Started in Coalesce

Figure 1-13. Data sources modal showing all of the objects available
from each of the storage locations configured.

You can select as many or few data objects as you want to add to
your data pipeline. Once you have selected the data sources you
want to work with, you can add them to our graph. Coalesce will
add each object into your graph as a node. In the next chapter of this
guide, we will discuss what a node is in detail, but for now, all you

Adding Data Sources | 17

need to know is that it’s a visual representation of the objects you
have added into your graph.

Building on Your Foundation
This chapter laid the foundation for all the components you will
be using in Coalesce. In it you learned how to navigate the user
interface and how each segment of the interface is used. You learned
about the purpose of projects and how to set one up. You also
learned how to create a workspace and connect to your data plat‐
form. At the end of the chapter, you saw how to bring data sources
into your graph. At this point, you are ready to begin developing
your data.

However, before you begin building a data pipeline, it’s important
to understand the core concepts of how to develop your data in
Coalesce. In the next chapter, we’ll explore everything you need to
know to begin your journey building data pipelines and applying
all of the knowledge from this chapter, to the concepts of pipeline
development in Coalesce.

18 | Chapter 1: Getting Started in Coalesce

CHAPTER 2

Coalesce Core Concepts

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 2nd chapter of the final book.

If you’d like to be actively involved in reviewing and commenting
on this draft, please reach out to the editor at mpotter@oreilly.com.

In the previous chapter we laid the foundation for your understand‐
ing of Coalesce components, such as projects, workspaces, and stor‐
age locations. In this chapter, we will lay the building blocks on top
of your foundation, by providing you with the core concepts that
empower Coalesce data development. You will learn why column-
aware architecture is important within data transformations, what
nodes are and how they harness column-aware architecture, the
data pipeline approach, and managing data development.

At the end of the chapter, you’ll walk away with the knowledge that
will provide you with the framework you need to understand and
develop your data on the platform. And there is no better place to
start than understanding column-aware architecture.

19

Column-aware Architecture
Data processing workloads in modern data platforms don’t just
operate on the scale of thousands of database tables; they run on
hundreds of thousands—even millions—of columns. Coalesce is
built from the ground up to automate data transformations while
keeping a code-first approach and flexible interface. This all starts
with a column-aware architecture.

But what is column-aware architecture? Column-aware architecture,
or being column-aware, is an approach to managing data trans‐
formation with an understanding of columns and how they are
connected. With this understanding, Coalesce provides automated
column-level lineage, while enabling the creation and maintenance
of database objects at scale. This column-aware architecture cap‐
tures metadata for each object created, allowing you to leverage
incredible development speed and agility in your data transforma‐
tion workloads.

By using column-aware architecture, Coalesce shifts the paradigm
of traditional data transformation processes to an automated, reus‐
able, and scalable approach. We’ll see how this translates to the
foundational building blocks of Coalesce (nodes), but first, let’s dig
deeper into the benefits of building a data transformation platform
using column-aware architecture.

Data Patterns
Column-aware architecture is the key to standardizing how trans‐
formations are applied, how tables are structured, and how columns
are logically connected. This standardization can be referred to as
a pattern, which is a reusable step in a data transformation process
that represents a logical transformation. This can include:

• Incremental & processing logic•
• Materialization logic•
• Deployment logic•

These data patterns are essential for the creation, management, and
accessibility of data, especially at enterprise scale. Coalesce provides
a platform to rapidly implement these data patterns by leveraging
metadata at the column level. With column-aware metadata, you

20 | Chapter 2: Coalesce Core Concepts

can build a single reusable data pattern that can be applied across
any of your data transformations.

Take, for example, a simple type 2 slowly changing dimension–an
industry standard for tracking historical data, such as a customer’s
current address and what it was six years ago, and every change
in between. Writing the complex SQL to deliver this functionality
could take hundreds of lines of code. Because Coalesce is column-
aware, this can be defined once and then reused as many times as
required without the need for writing the code each time.

In Coalesce, column-aware data patterns streamline complex, time-
consuming manual coding tasks. This speeds up data processing and
lets you focus on broader strategy while applying reusable logic with
confidence..

Impact Analysis and Lineage
Having data patterns is powerful, but if those patterns aren’t coupled
with the ability to understand and manage your entire pipeline in
one place, you may end up spending all of the time you saved
building patterns having to understand how changes impact your
pipeline. This is a second powerful benefit of using column-aware
architecture: this column-awareness enables complete impact analy‐
sis and lineage at the column level.

Imagine you’ve just deployed a pipeline that powers critical stake‐
holder dashboards. It’s Monday morning, and you wake up to an
email from your SaaS ETL provider: they’ve changed the schemas of
several tables in your pipeline. Panic sets in. Which columns in my
pipeline are impacted? Are dashboards already broken? How many
transformations are affected?

With column-awareness, you can quickly see how changes to your
data affect everything downstream as seen in Figure 2-1. You’ll
know exactly what’s been impacted and can fix issues before they
become problems. You can see exactly how each object and column
affects your pipeline at any moment, no guesswork or managing
dozens of SQL tabs.

Column-aware Architecture | 21

Figure 2-1. Column level lineage showing the impact of every column
throughout a pipeline.

Additionally, with column-awareness, you can perform bulk opera‐
tions directly at column granularity and across your data platform,
making source data changes or business logic changes easy and
straightforward to implement. For a data consumer, Coalesce pro‐
vides clear documentation at the column level, showing where the
data came from and how it was calculated. This transparency helps
build trust across the organization.

Scale and Governance
Column-awareness drives efficiency and accuracy in data manage‐
ment, even at scale—across hundreds of thousands of columns,
multiple teams, environments, and the entire business.

Column-aware state management minimizes the risk of data loss
and errors by enabling in-place, column-level modifications instead
of requiring full table re-creations. It also offers detailed column-
level visibility into changes over time, a critical aspect of effective
DataOps and governance practices.

For instance, in a deployment with thousands of columns, Coa‐
lesce eliminates the need to build complex architectures to handle
changes. Instead, you can manage in-place edits out of the box
This approach reduces costs, enhances deployment visibility and
planning, and fosters trust among data consumers throughout the
organization.

This column awareness enables column propagation, allowing you
to add or remove columns across the entire pipeline with ease

22 | Chapter 2: Coalesce Core Concepts

through the user interface. This functionality streamlines column
management across your project, making column awareness a core
advantage.

Now that you have an understanding of column-aware architecture
in Coalesce, let’s dive into the foundation of data development:
nodes.

Nodes
Nodes are the core components used to build data pipelines in Coa‐
lesce. In Chapter 1 we defined a node as a visual representation of an
object (table, view). Now that you have an understanding of pattern
based development, we can provide a more precise definition.

A node is a visual representation of an object within your data
platform as seen in Figure 2-2. It serves as a building block for
constructing data pipelines and leverages data patterns to automate
your data transformations. Nodes are classified as node types, such
as a stage or fact node type–more on this shortly!

Figure 2-2. Nodes in the build interface representing a data pipeline.

Nodes enable pattern-based development by allowing you to define
a transformation once and repeatedly apply it, streamlining automa‐
tion and ensuring consistency across your pipeline. You can begin to
see how leveraging nodes can accelerate development while ensur‐
ing quality and consistency across your pipelines, as everyone works
from a shared pattern or standard. To build effectively with nodes,
it’s essential to understand how node types are created and function.
Let’s take a closer look at what makes up a node.

Node Architecture
Node types consist of three components: a node definition, a create
template, and a run template. Each of these components performs a

Nodes | 23

specific role in the representation and execution of a node type. Let’s
start with the node definition.

Node definition
The node definition defines the attributes available within a node
type, such as naming conventions and node type colors. It also
specifies the UI elements used to configure each individual instance
of the node type. For example, if you want to build a stage node
type for creating a consistent staging layer in your pipeline, the
node definition would define the naming convention for the node
each time it’s used. However, each instance of the stage node can be
configured differently, based on the options provided through the
UI elements in the node’s configuration. Such as one stage node type
being materialized as a view and another being materialized as a
table.

The node definition is defined using YAML as seen in Figure 2-3.

Figure 2-3. YAML used in the node definition to define the attributes
of the node type.

The Coalesce documentation contains information on the configu‐
ration options available to include in your node definition YAML
file as seen in Figure 2-4.

24 | Chapter 2: Coalesce Core Concepts

https://docs.coalesce.io/docs/

Figure 2-4. Coalesce documentation representing the various configu‐
ration options for the node definition of a node type.

Once you have your node definition defined, you can configure the
Create and Run templates.

Create Template
The create template for a node type defines the logic used to
automate the creation of the object. Typically, this involves Data
Definition Language (DDL) that leverages attributes from the node
definition—such as the selected materialization type—to execute a
CREATE statement in SQL.

You can define create templates using a combination of SQL and
Jinja, as shown in Figure 2-5.

Nodes | 25

Figure 2-5. The create template representing the SQL and Jinja used to
automate your DDL.

After you define the logic, Coalesce runs the DDL for each object
instance in your pipeline. Executing the create template creates the
object in your cloud provider automatically.. It is important to note
that the create template is only creating the object, it is not loading
data into the object. In order to insert data into the object, you need
the run template!

Run Template
The final component of a node type is the run template. This
is where you define the logic to automate the execution of your
transformations. Typically, it involves Data Manipulation Language
(DML) that leverages Coalesce’s column-aware architecture to exe‐
cute SQL and populate objects with data.

Like create templates, run templates are defined using a combina‐
tion of SQL and Jinja as shown in Figure 2-6.

26 | Chapter 2: Coalesce Core Concepts

Figure 2-6. The run template representing the SQL and Jinja used to
automate your DML.

With the logic defined, Coalesce will automatically run the corre‐
sponding DML for each node type. This will populate the objects in
your data platform with data based on the logic and upstream data
coming from your data pipeline. It’s important to note that some
node types may not need a run template, such as a view node type,
which is just storing a query to be run in the future. A view is never
actually populated with data.

Now that you understand the components of a node type and how
you can create reusable patterns, let’s explore the advantages of
developing with nodes.

Importance of nodes
Up to this point, we’ve seen how column-aware architecture
drives pattern-based development, accelerating data transformations
within Coalesce. Now, it’s important to bring everything together
and understand how these concepts translate into more efficient
pipeline development.

Standardization
We’ve already discussed how node types establish a framework for
consistent data development across your team. Now, let’s delve into

Nodes | 27

why this standardization is essential for long-term, scalable pipeline
development.

Standardization ensures that everyone operates from the same foun‐
dation, automatically and consistently. There’s no need for new cus‐
tom code, special permissions, or isolated environments. A node
type is defined once, and it’s ready to use repeatedly without addi‐
tional setup.

This standardization enables your team to embed best practices
directly into the nodes. Each time a node runs, you can trust it to
perform exactly as intended. It also allows you to optimize your
code, ensuring that each instance of a node type runs efficiently and
minimizes compute resource usage within your data platform.

Standardization streamlines development by reducing repetitive
object creation and manual coding. This allows your team to focus
on data transformation and modeling rather than boilerplate setup.
By minimizing development overhead, you can build and deploy
pipelines more efficiently.

As discussed earlier, you can define a dimension node type to sup‐
port type 2 slowly changing dimensions (SCDs). Whenever you
need to implement a type 2 SCD, you can add the dimension node
to your pipeline and configure it with just a few clicks as seen in
Figure 2-7. In seconds, you can automate the execution of a type 2
SCD, eliminating the need to write code from scratch or manually
adapt copied code to your specific tables.

28 | Chapter 2: Coalesce Core Concepts

Figure 2-7. The configuration options for a dimension node, allowing
you to set up type 2 SCD capabilities in seconds.

Nodes | 29

By using standardization in your pipeline development, you gain all
of the advantages discussed here. This does not mean that you are
giving up flexibility, as you’ll see in the next section.

Flexibility
Coalesce provides multiple built-in node types, including a dimen‐
sion node with preconfigured Type 2 SCD options, to streamline
development. While these predefined options simplify automation,
data projects often require customization.

Coalesce supports both custom code and a GUI-driven interface
(Figure 2-8), allowing you to define node behavior precisely while
maintaining an efficient and user-friendly development experience.

Figure 2-8. Coalesce provides you the ability to define your own data
patterns and write custom SQL all through a power user interface.

Coalesce enables you to create User Defined Nodes (UDNs), allow‐
ing you to configure nodes tailored to the specific needs of your
data development. Additionally, Coalesce provides a variety of pre‐
built node types available on the Coalesce Marketplace, designed to
address a wide range of use cases. We’ll learn more about Coalesce
Marketplace in the next chapter.

Independent blocks of logic
You’ve likely encountered SQL transformations that span hundreds
of lines, filled with multiple CTEs and repetitive code that violates
the DRY (Don’t Repeat Yourself) principle. Coalesce node types are
designed to address this by breaking transformations into logical,
reusable blocks.

Instead of bundling multiple CTEs and subqueries into one sprawl‐
ing query, Coalesce allows you to handle each logical task in its own

30 | Chapter 2: Coalesce Core Concepts

node. This means each CTE in a large query can become a separate
node in your pipeline.

You might be thinking that building pipelines this way will result
in more objects compared to consolidating everything into a sin‐
gle query—and you’re right! But typically, this is only a problem
because more objects typically means more development time
and management. But, because Coalesce relies on standardized,
reusable nodes, the building process is incredibly fast. And with
column-aware architecture in place, managing a pipeline at any
scale becomes simple. As we’ll explore in the next section, there
are significant advantages to designing pipelines using this pipeline
approach rather than relying on complex CTEs.

The Pipeline Development Approach
Complex data processing often involves breaking tasks into sequen‐
tial steps, where the output of one step feeds into the input of
the next. While Common Table Expressions (CTEs) can achieve
this, Coalesce takes a modular, pipeline-based approach that offers
significant advantages over traditional CTE development.

Transparency
One of the primary benefits of a pipeline approach is improved
transparency. Instead of consolidating all logic into a single
query, Coalesce uses nodes to represent individual logical
blocks. This modularity makes it easy to navigate your pipeline
and understand the function of each step. Additionally, you
can run individual nodes independently to view their results in
context, simplifying analysis and debugging.

Troubleshooting
The transparency of pipeline logic also simplifies troubleshoot‐
ing. Debugging a monolithic SQL query with hundreds of lines
and multiple CTEs can be tedious and error-prone. In Coalesce,
each logical step is a standalone node, allowing for a more
straightforward process to identify and resolve errors or data
issues. This modular design reduces the overhead required to
troubleshoot and maintain data pipelines.

Testing
Coalesce facilitates out of the box and SQL-based testing in
each node in the pipeline as shown in Figure 2-9. For example,

The Pipeline Development Approach | 31

you can validate uniqueness, check for null values, or run other
data quality checks at any step. By catching unsupported data or
logical errors early in the pipeline, you can prevent issues from
propagating to downstream processes, saving time and effort.

Figure 2-9. Out of the box tests that can be applied easily to any
column in the node.

Developing pipelines in this way allows complete control over each
element, while providing a streamlined approach to development.

Reusability
Breaking a data pipeline into nodes promotes reusability of logic
across the pipeline. For instance, if you create a node to deduplicate

32 | Chapter 2: Coalesce Core Concepts

records in an orders table, downstream nodes can reference and
reuse this logic without reprocessing. This eliminates redundant
computation and ensures consistency across the pipeline.

In contrast, using CTEs often requires duplicating logic across mul‐
tiple queries, which is harder to manage and less efficient.

Developing with a pipeline approach offers substantial advantages
in transparency, troubleshooting, testing, and reusability. While this
method may result in more objects in your data platform, Coalesce’s
column-aware architecture and node standardization make manag‐
ing pipelines of any size seamless and efficient.

The Development Workflow
So far, we’ve explored the fundamentals of nodes and the advantages
of building pipelines with them in Coalesce. But what does the
actual development workflow look like? While we’ll dive deeper into
pipeline construction in the next chapter, there are two essential
concepts to understand for developing your data in Coalesce: work‐
space development and environments.

Workspace Development
Each workspace in Coalesce comes with a build interface
designed for data development. When working within a work‐
space, each user will have their own set of credentials. Typically,
development occurs in a sandbox or personal space within your
data platform. This means that any objects you create are iso‐
lated to your storage location, allowing you to experiment and
iterate without impacting shared environments.

Think of a workspace as your personal sandbox for developing
and testing data pipelines. Once you’ve finalized your pipeline,
you can deploy your work to an environment for broader use.

Environments
Coalesce provides the use of environments for deploying data
pipelines, allowing for a structured workflow from development
to production. After finalizing changes in the workspace, com‐
mit them to a Git branch and deploy to the target environment.

Environments in Coalesce are tied to designated locations in
your data platform, such as specific databases or schemas
through storage locations and storage mappings. For best prac‐

The Development Workflow | 33

tices, Coalesce supports multiple environments, such as QA
and PROD, allowing you to test and validate your work before
deploying it to production. Figure 2-10 illustrates an example of
a typical environment setup.

Figure 2-10. The deploy interface in Coalesce, where you can deploy
your pipelines to higher environments in your data platform.

Knowledge Sync Complete
You are now equipped with the foundational knowledge needed to
start developing your data in Coalesce. In this chapter, we covered
column-aware architecture, how it supports pattern-based develop‐
ment through nodes, and why nodes serve as the optimal building
blocks for building pipelines.

If you encounter challenges as you progress through this guide, feel
free to revisit Chapters 1 and 2 for a refresher.

Up next, we’ll walk you through the process of building a data
pipeline—from data source to insight-ready tables. See you in the
next chapter!

34 | Chapter 2: Coalesce Core Concepts

CHAPTER 3

Building Data Pipelines in Coalesce

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 3rd chapter of the final book.

If you’d like to be actively involved in reviewing and commenting
on this draft, please reach out to the editor at mpotter@oreilly.com.

So far, you’ve spent time learning to set up Coalesce and explored
core components and concepts of the platform, such as projects,
workspaces, node types, storage locations and mappings, and
column-aware architecture. In this chapter, you’ll put this knowl‐
edge to work by learning how to build data pipelines in Coalesce.

In this chapter you’ll learn how to add data sources, create nodes,
and write SQL to transform data directly within any node. You’ll
also master functionality like creating joins, bulk-editing columns,
and applying tests to ensure data quality. Plus, you’ll discover how
Coalesce Marketplace enhances your pipeline with powerful exten‐
sions.

Let’s get started!

35

The Build Interface
In Chapter 1, you briefly learned about the Build Interface, which
is where you will be spending your time in this chapter. The Build
Interface is where you will develop your data products and build
node graphs and pipelines. You can assess it by launching any work‐
space from the projects page as seen in Figure 3-1.

Figure 3-1. The Build Interface in Coalesce, displaying nodes organized
in the form of a pipeline.

The Build Interface contains all of the necessary components to
build data pipelines. In the sidebar in the upper left side of the
interface, you’ll see navigation options for Nodes, Subgraphs, and
Jobs. You’ll learn about subgraphs and jobs more in chapter 4, as the
focus of this chapter is on building pipelines with nodes.

In the lower left corner of the sidebar, you’ll have navigation for
your Problem Scanner, which will alert you on any issues or notifi‐
cations you should be aware of within your data pipeline. You’ll
also be able to access your Git Integration to easily version control
your work. Finally, you’ll see the Build Settings cog, which contains
all of the settings for the workspace you are building in, as seen
in Figure 3-2, such as the storage locations you learned about in
Chapter 1. Throughout the rest of this guide, we’ll explore each of
the items located in the Build Settings so don’t worry if you don’t
know what each of these items mean.

36 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-2. The Build Settings available in each Workspace in Coa‐
lesce.

The Build Interface also contains the Workspace Settings for the
workspace you are working in. You learned all about the Workspace
Settings in Chapter 1, when we discussed connecting to your data
platform, but you can easily access those settings from the Work‐
space Settings Cog in the upper left corner of the screen, as seen in
Figure 3-3. You can also find them in the Workspace line item in the
Build Settings.

The Build Interface | 37

Figure 3-3. The Workspace Settings cog, which allows you to configure
your workspace settings.

When it comes to building data pipelines, you’ll do this work within
the Browser, which is where your Directed Acyclic Graph (DAG)
and nodes in your pipeline are displayed, as shown earlier in Fig‐
ure 3-1.

Now that you’re familiar with the essential elements of the Build
Interface, it’s time to start building data pipelines. First up: data
sources.

Adding Data Sources
Data sources are a core component to any data pipeline—after all,
you can’t build a pipeline without a source. Adding data sources in
Coalesce is simple and straight forward. In the upper left corner
of the Build Interface, select the plus “+” button, and choose Add
Sources. This will open the Data Sources modal, which will display
all of the storage locations configured in the Workspace.

38 | Chapter 3: Building Data Pipelines in Coalesce

Each line item is a Storage Location that is pointing to a database
and schema. You can see in Figures 3-4 and 3-5 how the Storage
Mappings for each Storage Location correspond to the data sources
available in the modal.

Figure 3-4. storage mappings in the workspace settings, pointing your
storage locations to the database and schema in your data platform
where your data exists.

Figure 3-5. The same storage locations and mappings showing up in
the data sources selector.

By selecting any of the Storage Locations available, you can view
all of the objects available to use within Coalesce. For example, in
Figure 3-6, you can see there are eight objects available that we
could addinto our pipeline.

Adding Data Sources | 39

Figure 3-6. Selecting the data sources from the data sources modal.

You can either select the specific objects you need, or select all of
them by selecting the checkbox next to the Storage Location name.
You can select as many objects between any of the available storage
locations. Once you have selected all of the objects you want to add
to your pipeline as data sources, select the Add X Sources button
in the lower right corner of the modal, where the X represents the
number of objects selected.

Coalesce will automatically add all of the objects you selected into
the browser of the Build Interface as seen in Figure 3-7. Source
Nodes are represented by a dark orange color – as every node has a
unique color. This is consistent for any source node added into your
Workspace.

40 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-7. Data sources being displayed in the Browser.

With your data sources added into your Workspace, you can now
begin transforming this data by using Node Types – whether out of
the box, custom node types, or, as we’ll see later in this chapter, from
Coalesce Marketplace.

Adding Nodes to Your Pipeline
At the core of the developer experience in Coalesce is the ability
to quickly add nodes to your data pipeline and start transforming
data with ease. Nodes can be added directly from the platform
or through Coalesce Marketplace. Because each node follows a
standardized structure, the anatomy remains consistent across your
pipeline, creating a predictable and unified experience for every
developer. Coalesce includes several built-in Node Types to help you
move faster right out of the gate:

Adding Nodes to Your Pipeline | 41

• Stage•
• Persistent Stage•
• Dimension•
• Fact•
• View•

You can right click on any of the source nodes and hover over Add
Node to view these nodes as shown in Figure 3-8. Let’s explore each
of the node types below.

Figure 3-8. Node Types available to add to a data pipeline.

Stage
A Stage Node Type in Coalesce allows you to develop and deploy
work in a table or view. It provides an intermediary working or
staging layer to store, prepare, and transform raw data before down‐

42 | Chapter 3: Building Data Pipelines in Coalesce

stream tables in your data pipeline use these data. This staging layer
is a common data engineering practice for preparing your data.
Just as a cook needs to prepare raw ingredients such as carrots and
onions by slicing and dicing them before cooking, you can think of
Stage Node Types as the preparation layer.

Stage Node Types are by default set to truncate the data in your
table during each execution. This means that all data is deleted from
the table and the fresh data coming from the upstream node will
be processed into the Stage node. If the truncation is deactivated,
the execution nature of the node would be to append data to the
underlying table.

Persistent Stage
Similar to a Stage, a Persistent Stage is an intermediary Node Type
that provides data persistence across execution cycles. Unlike a Stage
Node Type, a Persistent Stage contains a business key allowing you
to determine the unique identifier for your data source, which, in
turn, allows you to persist or store historical data and load net new
records into the object. This functionality is particularly beneficial
when the objective is to retain historical data for prolonged dura‐
tions.

Dimension
Coalesce supports Type 1 and Type 2 Slowly Changing Dimensions
(SCD) out of the box. Each Dimension requires a business key,
or unique identifier, to be defined. You then have the option of
defining changing tracking columns, which will automatically con‐
figure the object as a Type 2 SCD when columns are selected. This
functionality is particularly beneficial in tracking changes to the
dimensions (data that describe your facts) in your data.

For example, you may want to know any time your customer’s
address changes when data is loaded from your sales data source.
You can simply select the address column in your data source as a
change tracking column, and Coalesce will automatically generate
best practice Type 2 SCD Structured Query Language (SQL) within
your data platform, saving you hours of developing time.

Adding Nodes to Your Pipeline | 43

Fact
Fact Node Types provide you the ability to develop and deploy
tables containing the measures or facts in your data platform. Each
Fact Node Type contains a business key as well as functionality
around varying operations for working with measures i.e. revenue,
cost of goods sold, profit, etc. By using Fact Node Types, you can
easily distinguish your Fact and Dimension nodes in the Browser
when looking at your DAG.

View
By default, the View Node Type is turned off when using Coalesce
for the first time. You can enable it by going to the Build Settings
and selecting Node Types and turning on the Enable toggle for the
View Node Type. This Node Type allows you to create objects as a
view in your data platform, which means it is not storing any data,
while also providing the flexibility to write custom SQL directly into
the SQL editor.

While these five Node Types listed come out-of-the box, Coalesce is
not limited to just these Node Types. As we learned in Chapter 2,
you have the ability to create your own Node Types, and as we’ll see
next, use any of the Nodes from Coalesce Marketplace.

Coalesce Marketplace
Coalesce Marketplace provides a wide array of packages that help
bring extensibility to your data pipeline projects. These packages are
composed of one or more Node Types that help you solve specific
problems or provide functionality to accelerate data development as
seen in Figure 3-9.

44 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-9. Packages available on Coalesce Marketplace that can be
added to your Workspace.

Any package with the blue certified checkmark means that Coalesce
has certified the package for production environments. Packages
that don’t include the checkmark are often developed by other
engineers or organizations and are not guaranteed to work in all
situations. You can see an example of this in Figure 3-10.

Figure 3-10. A Package that has been certified by Coalesce with the
blue checkmark and a package that has not been certified.

Adding Nodes to Your Pipeline | 45

You can easily install any of the Node Types from a package by
selecting the “Find out more” button on any package. Within the
package is a Package ID, and this package ID is how the package is
installed within Coalesce.

When inside the Build Settings, you will see the Packages settings.
Within the packages settings, you will see the option to either
Browse or Install packages, as seen in Figure 3-11. The Browse but‐
ton will open a new tab and take you to Coalesce Marketplace where
you can view all of the packages available to install. The Install
button allows you to install a package by providing the Package ID
of the package from Coalesce Marketplace.

Figure 3-11. The Browse and Install buttons in the upper right corner
of the Packages settings.

When installing a package, you will provide a package ID, version
of the package, and an alias. By default, the package will install
as the latest version, but you can manually change the version to
any previously supported version. The alias of the package is the
name or alias under which the Node Types will be displayed in
the Browser, as seen in Figure 3-12 and 3-13. Each Node Type that
is installed from the package will be displayed in the Node Type
settings within the Build Settings of your Workspace. You can then
add these Node Types to your pipeline just the same as any other
Node Type.

46 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-12. Providing an alias when installing a package.

Figure 3-13. How the alias shows up when you add nodes in the
Browser.

Whether they are out-of-the box, from Coalesce Marketplace, or
custom, you’ll use the same method to add all Node Types to your
data pipeline. Let’s learn how to begin building on our data sources
using different Node Types.

Putting Node Types to Work
As we discussed earlier in this chapter, a common pattern of data
engineering is to create a staging layer to prepare your data for the

Adding Nodes to Your Pipeline | 47

needs of your business users. To do this in coalesce, we can use the
Stage Node Type. You can select any node, including source nodes,
in Coalesce and right click on the node and hover over Add Node to
view all of the Node Types available to add to your data pipeline. In
this case, select Stage.

Coalesce will add a green Stage Node Type to the Browser and
will automatically add a prefix to the node: STG_, as seen in Figure‐
Image 3-14. This naming convention provides an additional way to
easily see the Stage nodes in your Browser.

Figure 3-14. The Stage Node Type with the STG_ prefix applied to each
node

As you learned about in Chapter 2, Coalesce uses data patterns to
provide the templates making up each Node Type. Because each
Node Type is a standardized object, you can add them to your
pipeline the same way. This also means that you can add them in
bulk to multiple objects, since the standard never changes.

In the Browser, you can see multiple nodes selected at once. By
right clicking on any of the nodes selected, you can hover over Add
Node and, to complete our staging layer, select Stage. Coalesce will
automatically add a Stage Node Type to each data source as seen in
Figure 3-15, allowing your team to immediately begin transforming
your data, without having to configure the code of each object
individually.

48 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-15. Bulk adding Stage nodes to the data pipeline

You can add any other Node Type available in your Workspace the
same way that you added Stage Node Types. For instance, you can
add a dimension node by right clicking on the STG_CUSTOMER
node and selecting Dimension, as shown in Figure 3-16.

Adding Nodes to Your Pipeline | 49

Figure 3-16. STG_CUSTOMER node with a dimension node as a
dependency.

You can continue this process for every object needed to develop
your data in your pipeline. As you add nodes to your pipeline, you
will need to configure them to help you provide solutions to the
problems you are solving. In order to do this, you will need to
understand the anatomy of a node.

The Anatomy of a Node
In Chapter 2, we discussed how a Node Type is created (Node
Definition, Create Template, Run Template). In this chapter, you
will learn about the basic anatomy of a node, so you can effectively
work with any Node Type. Whenever you double click on a Node in
the Browser, it will open the Node Editor. While the configuration
options (which you’ll learn about shortly) may be different, the basic
anatomy of each node is the same. Let’s dive into this a bit deeper.

The Mapping Grid
When opening a node for the first time, you’ll immediately see
the mapping grid, as shown in Figure 3-17. The mapping grid is
the display of all of the columns, including the name, data type,
transformations, and even comments that are inherited from the
parent node(s) in the DAG. You can easily add new columns, apply
transformations, change data types, and apply a multitude of other
operations in the mapping grid.

50 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-17. The mapping grid of the STG_CUSTOMER node.

Every node in your DAG will contain a mapping grid, even if it only
includes a single column or line item, and is your way of knowing
which columns you are working with.

The Configuration Options
Each Node Type contains configuration options that are unique to
that Node Type. For example, the Dimension Node Type contains
configuration options such as a Business Key and Change Track‐
ing columns, which is different from a Stage Node Type which
contains other configuration options. The configuration options of
each Node Type allow users to accelerate their data development
by reusing what has already been created as a standard. This is
why configuration of a Type 2 SCD saves hours of time for data
developers in Coalesce, because you can configure with just a few
clicks, while automatically generating 100s of lines of SQL for you.

You can view the configuration options of any node in the Config
tab in the upper right corner of the Node Editor as seen in Fig‐
ure 3-18.

Adding Nodes to Your Pipeline | 51

Figure 3-18. The configuration options of a node, providing the ability
to configure a node without having to write code.

52 | Chapter 3: Building Data Pipelines in Coalesce

Create and Run
A critical part of developing data pipelines in Coalesce is the ability
to create and run nodes. But what does that mean? When adding a
node to your pipeline in Coalesce, the node is not immediately cre‐
ated in your data platform i.e. Snowflake. You as the data developer
need to create the object in your data platform. The Create and Run
buttons allow you to create objects and then execute any action on
the object. Let’s break this down in an example.

When working with a Stage node, you have the ability to materialize
the object as either a table or a view. Let’s assume you choose to
build your object as a table. In order for the object to be created
in your data platform, you need to select the Create button. In
doing so, Coalesce will automatically take all of the metadata about
the node, and automatically generate the Data Definition Language
(DDL) for the object and create a blank object in your data platform.
Coalesce will use the name of the node as the name of the object in
your data platform as shown in Figures 3-19 and 3-20.

Figure 3-19. Name of the object in Coalesce.

Adding Nodes to Your Pipeline | 53

Figure 3-20. The same object created with the same name in your data
platform.

Once the Stage is created as a table in your data platform, it is
still empty. This is where the Run button comes in. By selecting
Run within the node, Coalesce will again take all of the metadata
provided from the node (column names, transformations, config‐
urations, etc.), and automatically generate the Data Manipulation
Language (DML) for the object, to insert data into the table. You’ll
be able to see the output of the operation in the Data Preview pane,
which will display any data available after a successful run.

This is how Coalesce acts as the interface between your data plat‐
form and your raw data. Now you may be thinking that if you need
to manually create and run each node, that is not a particularly
sustainable approach to pipeline development, and you would be
right! In Chapter 4, you will learn about deployments, and how
you can automatically schedule your data pipelines to refresh, which
effectively runs any of the Create and Run operations as needed.

The Join Tab
Each node type contains a Join Tab. This is located next to the
mapping grid, as shown in Figure 3-21. Within the Join Tab, you
will notice that there is a line of SQL already in the editor. The SQL
shows a FROM statement with a REF function nestled within some
curly braces. This line of SQL is creating the dependency to the
upstream or parent node i.e. the REFerence to the parent.

54 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-21. The Join Tab next to the mapping grid.

Within the Join Tab, you can perform multiple operations such as
joins, filters, and even window functions. The Join Tab is often used
for applying transformations to the object as a whole, rather than a
singular column. We’ll dig into the Join Tab more shortly, but for
now, you only need to know where it is and what it can do.

You may notice a few other options within each node, and we’ll get
to those later in the chapter, but now it’s time to get to the core of
what nodes are doing, transforming data!

Data Transformations in Coalesce
In this section, I will provide a general overview of core data trans‐
formation functionality in Coalesce, but know that there are virtu‐
ally an unlimited number of ways you can transform your data in
Coalesce using various Node Types and settings. To cover the basics,
I’ll focus on column level and node level transformations.

Column Level Transformations
To kick things off, let’s start with column level transformations.
These are applied to individual columns within the mapping grid
and are written using any valid SQL expression supported by your
cloud platform. Let’s look at an example.

Data Transformations in Coalesce | 55

In the node in Figure 3-22, we are applying an UPPER() function to
a variable character column in order to apply consistent text casing
across the field.

Figure 3-22. Applying a column level transformation to a column in
the mapping grid.

While this is a relatively simple example of a column level transfor‐
mation, you can probably begin to see the ease of management
for writing transformations in this way, such as the column level
transformations shown within Figure 3-23.

56 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-23. Multiple column transformations easily managed in the
mapping grid.

Column level transformations can be quite complex, such as nested
CASE WHEN statements that contain aggregate functions. Effec‐
tively, if you could write the column level transformation in your
data platform, you’ll be able to write it within Coalesce.

Each column level transformation will contain the name of the
column being transformed, as well as the upstream dependency of
that column. In this way, you are listing the full table and column
reference to provide the metadata to generate the transformation
code automatically for you.

It’s important to note that column level transformations are only
transforming singular columns. You will not be able to filter an
entire table in a column level transformation, that is where you
would use the Join Tab.

Node Level Transformations
Using the Join Tab, you can apply table or node level transforma‐
tions to your data. Let’s assume you’ve transformed all of your
columns and are ready to apply any SQL necessary to support
the logic of the table. For example, maybe you used an aggregate
function and now need to supply a GROUP BY—you can supply
this in the Join Tab. Maybe you’re working with sales data for an

Data Transformations in Coalesce | 57

Ecommerce organization and only want to view sales where the
order is delivered—you could apply the filter in the Join Tab. You
can see examples of these in Figure 3-24. Effectively, if you need to
apply any SQL at the table level, you should apply it in the Join Tab.

Figure 3-24. Writing SQL to configure the node at the node level.

Whether you are using column level transformations or transform‐
ing data at the node level, you can use any SQL supported by your
data platform to do so. There is no proprietary syntax limiting your
ability to write SQL or use a different language, you can just plug
and play. Now that you’re familiar with the Join tab, let’s explore its
namesake–the join itself!

Joins
Up until this point, we have been working with and transforming
data in single nodes. But what happens when you want to join
multiple nodes together? Coalesce makes this just as easy as adding
a node to your data pipeline.

In the Browser, you can select two or more nodes you want to
join together. Once selected, you can right click on either node
and hover over Join Nodes, and you will see all of the options
available for adding a node, but now available as a joined node. In

58 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-25, the STG_ORDERS and STG_LINEITEM nodes can be
joined together as a new Stage Node Type. Figure 3-26 shows the
result of a join in the Browser

Figure 3-25. Applying a join using the Join Nodes option in the
Browser of Coalesce.

Figure 3-26. The result of the Join Nodes option in the Browser.

Once the joined Stage node is selected, Coalesce will automatically
drop you into the Node Editor. To configure the join, navigate to the
Join Tab. You will see a join statement that Coalesce has automati‐
cally generated for you. In most cases, all you need to do is provide
the join condition i.e. the column names used to join the tables
together. This can be done by removing the placeholders shown in
Figure 3-27 and replacing them with the column names needed to
configure the Join as shown in Figure 3-28.

Joins | 59

Figure 3-27. Column placeholders in the Join Tab for join conditions.

Figure 3-28. Configuration of the join in the table with the proper
column condition

As you learned earlier, when it comes to table level transformations,
we could always add another join condition if necessary as shown in
Figure 3-29.

Figure 3-29. Adding another join condition showing flexibility of SQL
editor.

Coalesce automatically infers when a join is occurring. If you hap‐
pen to delete or break your code, you can always have Coalesce
regenerate the join. In the upper right corner of the Join Tab
SQL editor, you’ll see the Generate Join dropdown, as shown in
Figure 3-30, which allows you to regenerate the code back in the
SQL editor, or copy directly to your clipboard.

60 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-30. The automatic join generation that Coalesce provides in
each node.

This same process can be used to join any number of nodes together,
making it simple and easy to manage even the most complex joins.

Once tables have been joined, there are often many columns that
need additional work—whether it is renaming, changing data types,
or applying transformations. In Coalesce, you can handle these tasks
efficiently using the bulk editor, which you will learn about next.

Bulk Editing
Joins can cause the need for you to deal with multiple columns
at once. In traditional data development scenarios, you may be
required to manually delete columns one by one, or apply transfor‐
mations to one column at a time. But because Coalesce uses data
patterns and metadata to accelerate your data development, you can
bulk edit columns straight from the mapping grid.

Let’s assume you’ve joined the two nodes together from our previ‐
ous example. You now have multiple columns containing variable
character data types. In the case where you want to apply consistent
text casing like our example from earlier, you can bulk add this
transformation to each column you select, and only write the trans‐
formation one time.

Bulk Editing | 61

If you were to select all of the VARCHAR columns in the node and
right click on any of the columns, you could select Bulk Edit, as
shown in Figure 3-31. This would open the Column Editor next to
the configuration options you learned about at the beginning of the
chapter.

Figure 3-31. FigureImage 3-31. Selecting columns in bulk in order to
bulk edit them.

You could then select the attribute you wanted to transform, such as
the column names, data types, or transformations. For our example,
we’ll choose transformation and write a simple UPPER({{SRC}})
function that can be applied to each column as shown in Fig‐
ure 3-32. You’ll learn about the {{SRC}} token in Chapter 4, but
for now know that it automatically resolves the column in any
transformation!

62 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-32. The bulk column editor, applying the UPPER function to
multiple columns as a transformation.

An attribute of a column can be bulk transformed in this way. Addi‐
tionally, if we were to want to remove multiple columns, we could
easily select all of the columns we wanted to delete, right click on
any of the selected columns, and select Delete Columns, as shown in
Figure 3-33.

Figure 3-33. Bulk deleting columns from the mapping grid.

By allowing users to work with columns in bulk, Coalesce makes
it easy to update multiple fields at once—saving time and letting
developers focus on higher-value work.

Bulk Editing | 63

Data Transformation in Process
There was quite a lot of information to digest in this chapter. You
learned about the Build Interface and all of the components it con‐
tains. You learned all about adding data sources and how to add
Nodes to your pipeline, including the many different kinds of Node
Types available to you. You also learned about the anatomy of a
node and how to use SQL to transform data inside of any node,
while also joining nodes together and applying bulk updates. Whew!

Coalesce is no less powerful because it leads with a user interface. In
fact, it enhances efficiency by standardizing the way work is done,
ensuring everyone builds from the same foundation. And when you
need to write SQL, it is always available. A visual interface does not
limit capability—it amplifies it.

In the next chapter, you’ll take your new data transformation skills
and sharpen them by learning how to manage the data pipelines
you build in Coalesce. You’re quickly becoming a data developing
master.

64 | Chapter 3: Building Data Pipelines in Coalesce

CHAPTER 4

Managing Data Pipelines in
Coalesce

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 4th chapter of the final book.

If you’d like to be actively involved in reviewing and commenting
on this draft, please reach out to the editor at mpotter@oreilly.com.

In the previous chapter, you used Coalesce to build data transfor‐
mations and pipelines. But managing existing pipelines is just as
crucial as creating new ones. This chapter covers both: building any
data product in Coalesce and how to manage pipelines of any size
effectively.

You’ll learn how to inspect objects to understand their contents and
where they are built. You’ll use column-level lineage to perform
impact analysis and leverage the problem scanner to identify and
resolve issues efficiently. This chapter also explores key management
features, including version control, macros and parameters, testing,
subgraphs, jobs, and environments.

65

First, you’ll navigate the nodes in your pipeline to establish a solid
foundation for managing your data workflows.

Managing Nodes Using Views
As you build nodes in Coalesce, obtaining full context about them
can be challenging but essential for development decisions. Coalesce
makes this process straightforward. By default, it displays pipeline
development as a graph, which is shown in Figure 4-1.

Figure 4-1. Image of multiple node types creating a graph in Coalesce.

Additionally, Coalesce provides two more views: the node grid and
the column grid. These views offer deeper insights into your pipe‐
line. Let’s explore all three views.

The Graph
The graph view provides the best way to see your entire pipeline and
its dependencies. It constructs a Directed Acyclic Graph (DAG) that
displays the connections and dependencies of each node. This view
gives a comprehensive understanding of how data moves through
the pipeline. When troubleshooting, the graph view helps quickly
identify dependencies and determine how far upstream or down‐
stream a specific object is. It also makes it easy to distinguish nodes
by their unique colors, as shown in Figure 4-2.

66 | Chapter 4: Managing Data Pipelines in Coalesce

Figure 4-2. The node menu rolls up all of the nodes to the respective
color of the node type.

The Node Grid
When developing data products in Coalesce, finding a specific node
or object in the graph can be challenging, especially in projects with
hundreds or thousands of nodes. For large projects, you can use
subgraphs to help with this, but you’ll learn more about that later in
this chapter.

The node grid provides several ways to filter and locate nodes effi‐
ciently. It allows filtering by individual columns, so you can display
only nodes of a specific type, such as Fact nodes. Additionally, the
filter bar supports selector queries, which you’ll learn about in the
next section, enabling you to include or exclude values from your
search to refine the displayed nodes. For example, if you are pro‐
cessing orders data with some stage nodes, you can use the filter bar
and selector syntax to search for nodes that follow a STG_ORDER
naming convention, as shown in Figure 4-3.

Figure 4-3. Using an Include filter to filter the Node Grid for only
tables with STG_ORDER in the name.

You can also group nodes in the mapping grid by their associated
storage location. To do this, drag and drop the Storage Location

Managing Nodes Using Views | 67

column into the row groups area. This immediately organizes nodes
into groups based on their storage location. You can further refine
these groups using column filters and selector queries.

The Column Grid
Column-level architecture, which you have already explored in pre‐
vious chapters, makes it easy to manage columns in Coalesce. A
primary way to do this is through the column grid, which provides a
detailed view of every column in your workspace in one place. This
view offers several advantages.

First, the column grid displays all columns in a single location.
Instead of being scattered across isolated documentation or tied to
specific objects, this view provides complete transparency. It allows
data practitioners to see all columns in a workspace without search‐
ing through individual objects or fragmented documentation.

Second, the column grid supports the same filtering and selector
queries as the node grid. This makes it easy to refine searches and
locate specific columns. For example, you can apply a filter to find
any column containing a specific name, as shown in Figure 4-4.

68 | Chapter 4: Managing Data Pipelines in Coalesce

Figure 4-4. Using a column header filter in the Column Grid to filter
for ORDER_ID.

Like the node grid, the column grid allows you to create groupings
using column headers. For example, you can group by Storage Loca‐
tion and Node Name to refine searches for columns within a specific
location or object in your data platform.

You can also use selector queries or column filtering to view and
manage transformations applied to any column. This provides a
powerful interface for handling column-level transformations. For
example, you can search for a specific column name and review all
associated transformations. This is especially useful when updating a
transformation across multiple objects.

Managing Nodes Using Views | 69

For instance, let’s assume you use a transformation to extract the
area code from phone number columns in various datasets. This
transformation relies on a LEFT function to capture the first three
digits of the phone number. However, after an application update,
phone numbers now include a country code (such as +1 for the
United States). As a result, the existing transformation no longer
works correctly because it captures the country code along with the
first two digits of the area code.

To update this transformation, you can filter the mapping grid to
locate the specific transformation. Then, using the Bulk Editor, you
can update every affected column at once by modifying the function
and applying the changes with a single click, as shown in Figure 4-5.

Figure 4-5. Bulk editing columns after identifying the transformations
in the Column Grid.

Each view in Coalesce offers distinct ways to manage objects and
columns in your data pipeline. These views equip you with the tools
needed to efficiently navigate and control your pipelines. However,
Coalesce provides additional functionality that extends beyond node
visualization, allowing for even greater project management control.

Subgraphs
So far, you have explored how to use Coalesce pipeline views to
manage objects in your pipeline. As your workspace grows to hun‐
dreds or thousands of nodes, viewing everything in the graph can
become challenging. Subgraphs help manage this complexity by
allowing you to isolate parts of the node graph.

Subgraphs break down defined sections of your pipeline into logi‐
cally separate sections. They can be defined manually or by using
a Selector query. For example, suppose you are working on an
enterprise data warehouse in Coalesce with dozens of data sources.

70 | Chapter 4: Managing Data Pipelines in Coalesce

Your graph has grown to over 500 nodes, making it difficult to
locate nodes associated with a specific data source, such as customer
relationship management (CRM) data. To address this, you can
organize each data source and its processing nodes into separate
subgraphs.

To create a subgraph, select all nodes related to your CRM data that
you want to associate with the subgraph. Then, in the Subgraphs tab,
click the + button and select Create Subgraph. Coalesce will generate
a subgraph that displays only the nodes associated with your CRM
data, as shown in Figure 4-6.

Subgraphs | 71

Figure 4-6. Subgraph created to contain only data from a CRM (Sales‐
force).

Additionally, just as you can use selector syntax for viewing nodes,
you can use it to select nodes to add to a subgraph as shown in
Figure 4-7.

72 | Chapter 4: Managing Data Pipelines in Coalesce

Figure 4-7. Using Selector Syntax to select the nodes to add to a
subgraph.

Up to this point, you have seen multiple references to selector syn‐
tax, but you have not yet explored what it is. Now that you know
where you can use selector syntax, let’s take a closer look at what it is
and how to apply it.

Selector Queries
Selector queries, refine and enhance search criteria throughout vari‐
ous functions in Coalesce. Each selector query follows a structured
search syntax with attributes that allow you to retrieve specific infor‐
mation.

For example, to filter your pipeline for only Stage nodes, you can use
the nodeType attribute in the following query:

{ nodeType: Stage }

This query filters the workspace to display only Stage nodes. You
can apply the same approach to any other node type.

Coalesce supports multiple attributes, which are documented in the
Coalesce documentation, to help refine and enhance queries. You
can combine multiple attributes within a single query. For example:

{name: SUPPLIER* location: BI nodeType: Dimension }

This query searches for:

Selector Queries | 73

https://docs.coalesce.io/docs/build-your-pipeline/column-bulk-editor/

• Any node name that contains SUPPLIER, using the asterisk (*)•
as a wildcard.

• Nodes built within the BI Storage Location.•
• Only Dimension nodes that meet these criteria.•

Operators further enhance selector queries by providing more con‐
trol over searches. For example, the plus (+) operator selects prede‐
cessors or successors based on placement:

+{name:STG_SUPPLIER}
{name:STG_SUPPLIER}+

You can also use the AND and OR operators to add conditional
logic:

**{name:STG_} OR {name:REGION}

Selector queries allow precise filtering of pipelines, giving you more
control over how your data is managed. You will revisit selector
queries when learning about jobs later in this chapter. But for now,
you should feel comfortable using them to filter views and create
subgraphs. Selector queries aren’t the only way to be able to refine
your search within your data pipeline. Coalesce provides column
level lineage to allow you to understand how each column flows
through your pipeline, which you’ll learn about next.

Column Level Lineage
In chapter 2 of this guide, you explored column-level architecture
in Coalesce. Since Coalesce is built with column-level architecture
from the ground up, you can take advantage of powerful features
that streamline data pipeline management and accelerate develop‐
ment. One of the most powerful components that results from this is
column-level lineage.

Column-level lineage in Coalesce allows you to track each column
as it moves through the pipeline. This includes transformed col‐
umns, showing how multiple columns combine into one or how a
single column splits into multiple columns. Leveraging its column-
level architecture, Coalesce also enables you to propagate column
additions and deletions to downstream nodes with a single click.

To view column-level lineage, double-click into any node, select
one or more columns, right-click the selection, and choose View

74 | Chapter 4: Managing Data Pipelines in Coalesce

Column Lineage. Coalesce will open the column lineage view, high‐
lighting the selected column(s) and displaying their flow throughout
the entire pipeline, as shown in Figure 4-8.

Figure 4-8. Column level lineage of how columns flow through a pipe‐
line and are transformed.

This context enables you to perform quick and precise impact anal‐
ysis, allowing you to see exactly how changes will affect your pipe‐
line. Additionally, any column with a transformation can display
its transformation within column-level lineage, providing further
insight into how modifications will impact your pipeline, as shown
in Figure 4-9.

Figure 4-9. Column level lineage displaying the transformation
involved in the column.

For example, suppose your ETL solution adds a new column that
needs to be exposed in a dashboard for stakeholders. In traditional
pipeline development, this process can be tedious, requiring you to
open every object the column passes through, run new DDL scripts,
and potentially perform complex backfilling operations. In Coalesce,
you can propagate the new column to all necessary nodes in just a
few clicks.

Column Level Lineage | 75

In this scenario, the pipeline is undergoing a schema change. Let’s
assume the pipeline processes data through a staging layer before
exposing it to downstream nodes. You can rename or transform the
new column in the staging layer and then view its column lineage.
Within the column lineage view, you can navigate to the selector
dots next to the column name and select Propagate Addition, as
shown in Figure 4-10.

Figure 4-10. Preparing to propagate an addition of a column to down‐
stream nodes.

After selecting Propagate Addition, you can choose which down‐
stream nodes should receive the new column. Check the box next
to each node name, then click Preview and Apply to finalize the
change, as shown in Figure 4-11.

76 | Chapter 4: Managing Data Pipelines in Coalesce

Figure 4-11. Persisting the column to the downstream nodes.

It’s really that simple. Coalesce handles all necessary DDL changes,
updates each selected node with the new column, and allows you to
process data as needed within your nodes.

Column-level lineage provides a clear view of how each column
moves through your data pipelines. Additionally, it also enables you
to propagate changes with just a few clicks, reducing errors and
accelerating development.

The Problem Scanner
So far, you have seen how to manage pipelines when you know what
needs to change, such as updating a transformation for a column
change. But what about unexpected changes? A column update
might have unintended consequences. Removing a column from a
node could break dependencies without you realizing it. How do
you catch these issues before they cause problems?

The Problem Scanner is a critical feature in Coalesce that alerts you
to potential issues in your workspace. It detects broken dependen‐
cies, column breakages due to renaming or dependency changes,
and misconfigured systems such as Git or your data platform.

Using the Problem Scanner to identify issues before they impact
a production environment is essential for maintaining stable pipe‐
lines. This ensures business users always receive accurate and reli‐
able data. The problem scanner automatically scans your entire

The Problem Scanner | 77

pipeline in real-time and you can always access it in the lower left
corner of the build interface.

A common alert from the Problem Scanner occurs when column
dependencies are broken. As shown in Figure 4-12, Coalesce high‐
lights these breakages within the Problem Scanner. You can select
any listed issue to navigate directly to the affected node and resolve
the problem.

Figure 4-12. The Problem Scanner identifying a broken dependency.

You can then apply the skills learned in the previous chapter to
transform or bulk edit the issues identified by the Problem Scanner
within the node. While appearing as a subtle feature, the Problem
Scanner helps prevent confusion by identifying breaking changes

78 | Chapter 4: Managing Data Pipelines in Coalesce

before they become critical issues, helping you spend more time on
building data products.

Version Control
Version control is a critical part of any data development project.
Coalesce provides robust version control, enabling a continuous
integration and continuous development (CI/CD) process through
your preferred Git provider. In this guide, we assume you are using
GitHub.

In Chapter 1, you learned that Coalesce natively integrates with Git.
Now, it is time to understand how version control works within
Coalesce. Once Git is integrated, you can create a project and a
workspace. The project links to the Git repository of your choice,
while the workspace is associated with a branch from that reposi‐
tory, as shown in Figure 4-13.

Figure 4-13. Workspace with a Git Branch tied to it.

With your repository and branch configured, you can launch your
workspace and begin building data products as you’ve learned to do
in the past two chapters. As you build, you will notice the version
control icon in the navigation bar on the left side of the screen
towards the lower left corner as shown in Figure 4-14.

Version Control | 79

Figure 4-14. The Git Icon in the middle of the navigation bar.

By clicking on the version control icon, the Coalesce git modal
will open and you will be able to view all of the work you’ve
performed in your workspace since your last commit. If you’ve
never performed a commit, the modal will display all of your work,
broken down into the categories they are associated with, such as
Nodes, Subgraphs, and Packages, as shown in Figure 4-15.

80 | Chapter 4: Managing Data Pipelines in Coalesce

Figure 4-15. Coalesce categories of files ready for version control.

When you open any version-controlled file, you can view a file
differential (diff). For new files, the diff will be blank. For recently
changed files, Coalesce highlights modifications using red and green
lines, as shown in Figure 4-16. In Coalesce, all work is saved as
YAML files, so diffs are displayed in YAML format.

Figure 4-16. Coalesce highlighting the file diffs in the Git Modal.

Once you have reviewed your diffs and have approved your work,
you can choose to commit partial amounts, or all of your work at
once. Within the Git modal, by default, every file is selected to be
included in a commit. You can deselect any of the files you wish to

Version Control | 81

exclude from a commit, by selecting the blue checkbox next to the
file name as seen in Figure 4-17.

Figure 4-17. Selecting only certain files to be committed.

After selecting the files to commit, you can write a commit mes‐
sage or use the Coalesce AI commit message generator to generate
one based on your changes. Once the commit message is in place
and the files are selected, click Commit and Push to commit your
changes and push them directly to your version control system from
Coalesce.

So far, you have explored the Commit section within the Git modal.
However, you can also checkout, merge, or create a new branch
from any commit within the modal. To do this, select the Branches
tab next to the Commit tab, as shown in Figure 4-18. The Branches
tab displays all commits associated with the branch you are working
in. Coalesce also highlights the commit currently associated with
your workspace.

82 | Chapter 4: Managing Data Pipelines in Coalesce

Figure 4-18. The Branches tab, allowing you to work with any branch
in your Git Repository in Coalesce.

To change branches, open the Selected Branch dropdown and
choose any branch associated with the Git repository connected
to your project. This allows you to pull in branches from other
workspaces within the same project.

To check out a branch, select it from the dropdown, as shown in
Figure 4-19, and click Check Out Latest. This checks out the branch,
provided there are no unsaved commits in your current branch.
If you need to check out a branch without committing or saving
your current work, select the new branch and click Force Checkout.
Coalesce will prompt you to confirm before proceeding.

Version Control | 83

Figure 4-19. The branch selector within Coalesce.

You can merge commits from one branch into another directly
within Coalesce. To do this, open the Git modal, select Branches,
and choose the branch you want to merge your work into. Coalesce
will display all commits in the selected branch. Click Merge, next
to the commit where you want to merge your work. Coalesce will
preview the merge before applying it. If everything looks correct,

84 | Chapter 4: Managing Data Pipelines in Coalesce

confirm by selecting Merge, and Coalesce will handle the process
automatically.

Alternatively, you can use the Merge Latest button to merge only the
most recent commit from your current branch.

You can also create a new branch from any commit in any branch
within the Git modal. To do this, click New Branch next to the
desired commit, as shown in Figure 4-20.

Figure 4-20. You can create a new branch from any commit by select‐
ing the New Branch button.

All of the changes within the git modal in Coalesce will be reflected
in your version control system that you have integrated. This gives
you complete control over the entire development and versioning of
all of your work in the same system.

Macros and Parameters
This section could have been included in the previous chapter, but
it fits better as a management topic since it streamlines data devel‐
opment and provides greater control over transformations. Macros
and parameters are related but serve different purposes, so we will
cover them separately. Let’s start with Macros.

Macros
Macros are functions that take arguments and return a string. You
can use these strings in node templates, transformations, and joins
to ensure consistency across your project. The returned strings ulti‐
mately represent SQL commands, allowing your team to define
reusable code in a single location and apply it throughout the
project.

For example, to determine if a numerical column contains an odd or
even value, you could write a macro as follows:

{%- macro even_odd(column) -%}
 CASE WHEN MOD({{ column }}, 2) = 0 THEN 'EVEN' ELSE 'ODD' END
{%- endmacro %}

Macros and Parameters | 85

In this macro, the function receives a column as an argu‐
ment and returns either ‘EVEN’ or ‘ODD’. To use this
macro in a transformation, call it using the syntax {{ func

tion(‘“schema”.”table”’) }}. In this case, the function is named
even_odd, so calling the macro would look like:

{{ even_odd('"CUSTOMER"."C_NATIONKEY"') }}

or

{{ even_odd('{{SRC}}') }}

Macros support everything from simple SQL statements to complex
transformations. You can apply them directly to your workspace
or include them in any package installed from the Coalesce Market‐
place.

To add a macro, navigate to Build Settings and select Macros. You
will see sections for Workspace Macros and, if installed, Package
Macros, as shown in Figure 4-21.

Figure 4-21. Macros area of the Build Settings.

86 | Chapter 4: Managing Data Pipelines in Coalesce

Sometimes when working with Macros, they need to receive input
from a parameter, so let’s talk about this next!

Parameters
Parameters act as read-only environment variables. Parameters are
defined as a JSON blob set by the user that can be accessed in the
metadata during template rendering. These values can be set for a
Workspace/Environment at various points to provide flexibility of
template behavior during Deploying or Refreshing.

There are several reasons to use parameters as outlined below:

Environment Configuration
Parameters allow you to configure your data pipeline for differ‐
ent environments (for example, development, staging, produc‐
tion) without modifying the underlying code. For example, you
can use parameters to specify different database credentials, file
paths, or other environment-specific settings.

Dynamic Data Filtering
You can use parameters to dynamically filter or partition data
based on certain criteria. For example, you can use a date
parameter to only process data for a specific date range or a cus‐
tomer ID parameter to process data for a particular customer.

Reusability and Modularity
By changing certain values or logic into parameters, you can
make your data pipeline more modular and reusable. This pro‐
motes code reuse and maintainability, as you can easily swap
out parameter values without modifying the core transforma‐
tion logic.

Testing and Debugging
Parameters can be helpful for testing and debugging purposes.
You can use different parameter values to simulate various sce‐
narios or edge cases, making it easier to identify and fix issues in
your data pipeline.

Scheduling and Automation
When scheduling or automating data pipeline runs, you can
use parameters to pass dynamic values or configurations. This
allows you to adapt the pipeline behavior without changing the
underlying code, enabling greater flexibility and control.

Macros and Parameters | 87

Separation of Concerns
By externalizing certain values or configurations as parameters,
you can separate the concerns of data transformation logic from
the specific values or configurations used in different contexts.
This promotes better code organization and maintainability.

Compliance and Auditing
In regulated industries or environments with strict data gover‐
nance requirements, you can use parameters to enforce data
access controls, data masking, or other compliance-related con‐
figurations.

You can easily add parameters into your workspace or environment.
To add a parameter to your workspace, navigate to the workspace
settings and select the parameter item as shown in Figure 4-22. You
will learn about Environments and where to add parameters to them
at the end of this chapter.

Figure 4-22. The Parameters item within the Workspace settings.

Macros and parameters provide a flexible and modular way to orga‐
nize and manage data and operations throughout your pipelines.
Now that you understand how to manage and work with pipelines,
the next step is testing and running them as jobs in an environment.
The rest of this chapter will focus on these final steps.

88 | Chapter 4: Managing Data Pipelines in Coalesce

Testing
Coalesce provides built-in testing capabilities to assess data qual‐
ity. Data quality tests help identify issues such as missing values,
incorrect data types, outliers, and violations of business rules. Test‐
ing within Coalesce ensures that transformed data meets required
standards before it is loaded into the target node. Integrating data
testing into the pipeline workflow enables early issue detection and
ensures consistency across data sources and transformations.

Coalesce handles testing through built-in Node Testing capabilities,
which support tests at both the Column level and the Node level, as
shown in Figure 4-23.

Figure 4-23. Column level tests available out of the box.

You can use these to test for:

Column-Level Tests
Test individual columns for uniqueness and null values.

Node-Level Tests
Validate data quality across an entire node.

Testing | 89

To apply tests, select a node and click the Testing icon. Choose the
tests to run and specify which columns to include, as shown above
in Figure 4-23.

You can also write custom node-level tests using SQL queries. If the
query returns a result, the test fails. Additionally, you can configure
options to determine whether a test failure should halt pipeline
execution and whether tests should run before or after the node
refresh.

For more comprehensive and extensible testing, you can use the
Test Utility Package from the Coalesce Marketplace. This package
provides granular control over every component of each node and
column within your data pipeline.

Jobs
Now that you understand how to manage pipelines, use version
control, and test data, the next step is organizing pipelines into
Jobs. In Coalesce, you’ll use Jobs to refresh data pipelines. You can
execute these through the CLI or the native Coalesce Job scheduler.

Each job is identified by a Job ID, which includes all nodes associ‐
ated with that job. You can use a selector query to assign specific
nodes from your pipeline to a job. To manage jobs, navigate to
the Jobs menu in the left-side navigation bar. Here, you can view,
modify, and add new jobs. To create a new job, click the + button
and select Create Job. You will then define the job’s associated nodes
using a selector query, as shown in Figure 4-24.

90 | Chapter 4: Managing Data Pipelines in Coalesce

Figure 4-24. Selector syntax for defining a job.

Each Job has a unique Job ID associated with the job. This allows
you to reference the Job ID from the CLI to refresh all of the nodes
that are associated with the job. Alternatively, if you use the Coalesce
Job scheduler, you can reference the job name and have the job
refresh on a schedule. You’ll learn more about the Coalesce Job
scheduler in the next section on environments.

Environments
So far, this chapter has covered how to navigate, version, and man‐
age data pipelines. The final and most critical component of pipeline
management is validating pipelines and making them available for
consumption. This is where Environments come into play.

Environments handle deploying data pipelines to your data plat‐
form. They enable efficient deployment strategies, allowing you to
develop in a Workspace and then deploy to any Environment, such
as production or QA. Each environment can have different Storage
Locations, Storage Mappings, Parameters, and other configuration
settings.

An Environment is configured similarly to a workspace, with its
own Storage Locations, Storage Mappings, and a connection to your
data platform. You can view existing environments from the Deploy
Interface in Coalesce. If no environments exist, you can create one
from the Build Settings of your workspace.

Environments | 91

To create a new environment, open Build Settings in any workspace
and navigate to Environments. View the list of available environ‐
ments for management, then click Create Environment to open a
configuration modal. Provide the connection details for your data
platform and define Storage Mappings based on the Storage Loca‐
tions available in your workspace.

By configuring environments this way, data and objects persist
within specific locations in your data platform, allowing your team
to explore and validate pipelines.

For example, let’s assume you have completed development on a
new pipeline and need to perform QA testing before deploying to
a production Environment. You can create a QA Environment in
Coalesce that deploys pipeline objects to a dedicated database and
schema in your data platform for testing.

This approach ensures that your data platform is segmented for
different stages of pipeline development, from initial testing to final
production release, allowing business users to access validated data
with confidence.

Deploying
Deployment is the process of pushing your work to your data plat‐
form at the specified location. Once you have created your environ‐
ments, you can deploy your work at any time to the environment
of your choice, as long as the required data sources are included to
match those used in the workspace.

To deploy a pipeline to an environment, navigate to the Deploy
Interface and select the blue Deploy button, as shown in Fig‐
ure 4-25. This opens the deployment modal, where you’ll choose
a branch from the project you are working in and select a commit
to deploy. For example, if you have just added new nodes to your
pipeline and committed the work to your branch, you would select
that commit for deployment.

Figure 4-25. The blue deploy button to deploy your commits to an
environment.

92 | Chapter 4: Managing Data Pipelines in Coalesce

Once you select a commit, the next step is to provide any parame‐
ters, just as you would when setting parameters in a workspace.
Finally, Coalesce will generate a deployment plan, displaying all
changes and updates. If there are no errors and the deployment
looks correct, confirm the deployment, and Coalesce will push the
changes to your data platform.

Refreshing Your Pipeline
Once you have deployed your pipeline, you need a way to refresh
the data in those objects. Coalesce allows you to refresh pipelines
using either the Coalesce CLI or the native Coalesce scheduler.
This chapter focuses on the Coalesce scheduler, and we’ll cover the
Coalesce CLI in a later chapter.

Earlier in this chapter, you learned about Jobs. Once you’ve created
a job, you can use the Coalesce Scheduler to refresh it on a regular
cadence, ensuring your pipelines always contain fresh data.

To create a job schedule, navigate to the Deploy Interface and select
the ellipsis next to the blue Deploy button, as shown in Figure 4-26.
From here, choose View Scheduled Jobs to see all available jobs. You
can also create a new job schedule by selecting Create Job Schedule
in the upper-right corner.

You must be an Environment Admin to perform this
action. We’ll cover Role-Based Access Control (RBAC)
later in this guide.

Environments | 93

Figure 4-26. The ellipses next to the deploy button to schedule a job.

To complete the job schedule setup, fill in the required parameters,
including Project, Environment, and the Job to run. Finally, specify
the schedule for the job execution. Once configured, the Job Sched‐
ule will automatically refresh all nodes associated with the job at the
specified intervals.

The Makings Of A Pro
In the past two chapters, you have learned how to build, manage,
and refresh pipelines in Coalesce. You are now well on your way
to becoming a Coalesce pro and fully autonomous in end-to-end
pipeline development.

Specifically, this chapter covered how to navigate data pipelines,
create subgraphs, use version control, leverage column-level lineage,
and configure environments. With these skills, you are fully equip‐
ped to build and manage any pipeline in Coalesce.

In the next chapter, you will explore security and governance in
Coalesce. This will give you the ability to not only build and manage
pipelines but also oversee and secure your entire Coalesce instance
as an administrator. See you there!

94 | Chapter 4: Managing Data Pipelines in Coalesce

CHAPTER 5

Coalesce Security and Data
Governance

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 5th chapter of the final book.

If you’d like to be actively involved in reviewing and commenting
on this draft, please reach out to the editor at mpotter@oreilly.com.

Throughout this guide, you’ve laid the foundation for your data
projects. You’ve used Coalesce’s building blocks to construct your
house, and in the last chapter, you organized everything inside it.
Now it’s time to protect what you’ve built. In this chapter, you’ll
focus on security and data governance in Coalesce—locking the
doors, securing the windows, and keeping everything safe.

By the end of this chapter, you’ll know how Coalesce supports
Multi-Factor Authentication (MFA) and Single Sign-On (SSO).
You’ll learn how to configure OAuth for secure authentication.
You’ll also understand how Role-Based Access Control (RBAC)
works and how to set it up for your organization. Finally, you’ll

95

learn how to get a clear view of everything you’ve built and see how
it connects across your entire data stack. Let’s dig in!

Account Access
Let’s begin the conversation about security by talking about access‐
ing your Coalesce instance. Coalesce provides multiple different
methods to authenticate, or login, to your Coalesce account. As of
the time of this writing those methods are username and password
and a variety of supported single sign-on providers, such as Okta.
Let’s go over a bit more about single sign-on.

Single Sign-On
SSO allows users to authenticate into Coalesce using credentials
managed by an external identity provider, streamlining access and
improving security. Coalesce supports multi-organization environ‐
ments, so SSO users can log into multiple organizations with the
same credentials. SSO users are provisioned “just-in-time,” mean‐
ing their accounts are created automatically when they first log in
through your identity provider and no manual setup is required
beforehand.

To configure SSO in Coalesce, go to the User Menu in the upper-
right corner and select Organization Settings—just like you did in
Chapter 1. From there, choose Single Sign-On, then select your SSO
Authority, as shown in Figure 5-1. Follow the instructions in the
Coalesce documentation specific to your SSO provider to complete
the setup.

96 | Chapter 5: Coalesce Security and Data Governance

https://docs.coalesce.io/docs/organization-and-accounts/organization-management/single-sign-on/

Figure 5-1. Single Sign-On settings within Coalesce.

While SSO is a convenient way to manage access, it’s not the only
option. If you prefer to use a username and password to log into
Coalesce, you can add another layer of security by enabling Multi-
Factor Authentication.

Multi-Factor Authentication
MFA adds an extra layer of security to your Coalesce account by
requiring multiple factors: something you know (your password)
and something you have (a time-based code from an authenticator
app). Even if your password is compromised, MFA helps prevent
unauthorized access by ensuring only someone with access to your
second factor can log in.

To enable MFA in Coalesce, first navigate to User Settings by click‐
ing the User Menu in the upper right corner. Then select Account
and Security. Before turning on MFA, make sure your email address
is verified. If it’s not, resend the verification email and follow the
prompts. Coalesce suggests using an authenticator app as your MFA

Account Access | 97

method. Once selected, you can scan the QR code from your mobile
device and you will have a six-digit code generated by your Coalesce
MFA now in your authenticator app.

Keep in mind, once MFA is enabled, it can’t be turned off by the
user. Only an administrator can disable it. MFA is managed on a
per-user basis and can’t be enforced or disabled across the entire
Coalesce organization. Each user must enable MFA individually.

While the focus of this guide is centered on pipeline development in
the Coalesce user interface, Coalesce also provides access to a com‐
mand line interface (CLI) as well as exposing application program‐
ming interfaces (APIs). These extensions allow users to access and
execute commands in Coalesce without logging into the Coalesce
platform. This is done through the use of access tokens.

An access token allows you to make authenticated API requests,
ideal for deploying and refreshing jobs using third-party tools
instead of the Deploy Interface and job scheduler in Coalesce. To
generate an access token, go to the Deploy Interface. At the top
of the environments list, you’ll find the Access Token Generator as
shown in Figure 5-2. Copy the generated key, and you’re ready to
make API calls.

Figure 5-2. The Access Token generator within Coalesce.

So far, we’ve covered how users authenticate and access Coalesce.
But how do you control what they can access once they’re inside?
That’s where Role-Based Access Control comes in and that’s what
we’ll cover next.

98 | Chapter 5: Coalesce Security and Data Governance

Role Based Access Control
Role Based Access Control (RBAC) in Coalesce gives organizations
fine-grained control over who can access data assets and what
actions they can perform within the platform. RBAC works by
assigning users to roles. Each role carries a defined set of permis‐
sions that determine access to environments, objects, and specific
capabilities, such as deploying jobs or editing nodes. Instead of
assigning permissions to individual users, RBAC simplifies user
management by allowing administrators to create and manage roles,
making it easier to scale access control as teams grow.

At its core, RBAC helps organizations enforce data governance and
security policies. It ensures that users only have access to the areas
of Coalesce they need to perform their tasks. For example, a data
engineer working in development might need full access to create
and edit nodes, while an analyst working in production may only
need read access to published tables. RBAC helps you enforce these
boundaries in a clear and auditable way.

Coalesce RBAC is applied at the organization level and then again at
the Project and Environment levels. This allows for granular control
over exactly who should be accessing what projects and data. This
can be seen in Figure 5-3.

Role Based Access Control | 99

Figure 5-3. The hierarchy of role levels within Coalesce.

At the organization level, assign users an org level role: Admin,
Contributor, or Member. After that, you can assign them to spe‐
cific projects and environments with roles like Admin, Contributor,
Architect, or Member. Finally, you have the option to add users to
environments as either Environment Admin or Reader. You can see
a detailed breakdown of each of these roles in tables 5-1 through
5-3.

Table 5-1. Organization Level Roles.

Role Permissions Summary Recommended For
Organization
Administrator

The creator of the Coalesce App is automatically assigned
as organization administrator.
Only organization administrators can add other users,
including other organization administrators.
They have full access to all functionality in Coalesce.

Full administrative
control

Organization
Contributor

They can’t add new users to the organization.
They have access to read documentation, create API
tokens, user settings, and Git account information.
They will be able to set up a project, configure Git, add
members to projects,and oversee work.
Only have access to the projects created by them. If there
are multiple organization contributors, they will need to
share access with the organization contributor.

Managers who decide
how each person will
contribute to a
project.

100 | Chapter 5: Coalesce Security and Data Governance

Role Permissions Summary Recommended For
Organization
Member

This is the default role. They can edit Git account
information, create API tokens, and read documentation.

Default Role

Table 5-2. Project Level Roles.

Role Permissions Summary Recommended For
Project
Administrator

This role can manage projects, but not
create them. An organization administrator
or contributor can create projects. The role
has access to projects, deployments, and
environments.

Team manager or senior team
member to manage projects.

Project
Architect

This role can manage certain project
information, build nodes, and generate API
tokens. Assign this role to a data architect so
they can build the needed node types, set
storage locations, and create macros.

Senior data architects.

Project
Contributor

A project contributor can’t edit or create
custom nodes or macros. They have read-
only access to certain project settings. They
have read access to projects, deployments,
and environments.

Team members who need access
to project information without
making changes.

Project
Member

Assign this role if you want to add them to
the environment.

This role could be either a data
engineer or a data platform
engineer. The project member
would not be actively involved
in creating or maintaining data
pipelines, but would need access
to the environment level.

Table 5-3. Environment Level Roles.

Role Permissions Summary Recommended For
Environment
Admin

This role manages environment settings, reads
project documentation, and deploys either
through the API, CLI, or Coalesce App.

Data platform engineer
or operations who would
approve deployments and
schedule jobs.

Environment
Reader

This role only has access to the documentation
for the environment they are added to. They have
access to certain API functions to get deployment
information.

Business analyst or data
analyst.

To manage roles, start by opening the User Menu in the upper right
corner of the Coalesce interface. From there, select Organization
Settings, then click Users–you’ll see a list of existing users. You can
either create a new user and assign the organization role at the time

Role Based Access Control | 101

of creation, or select the Actions button to edit the user where you
can update their organization role as shown in Figure 5-4.

Figure 5-4. Assigning an organization role to a user in Coalesce.

After a user has an organization level role assigned, you can assign
users to projects and environments. On the projects page, select any
project within your Coalesce organization and select the Projects
Settings button. You’ll see the Members item within the modal
which you can select to view the users in your Coalesce organization
who have been added to the project.

To add a user to the project, select Add Member, choose their name,
and then provision them with the project level access you want them
to have as shown in Figure 5-5. Once you’ve added a member, you
can easily remove them by selecting the Remove button next to their
name. Managing access to projects is that easy.

102 | Chapter 5: Coalesce Security and Data Governance

Figure 5-5. Assigning a user a project level role.

You can follow a similar process to provision users to Environments.
Select the Deploy Interface and then the ellipsis next to the environ‐
ment you want to provision access to. Select Environment Settings
and similar to Projects, you will see the Members item within the
modal. Within Members, select Add Member to add a user who
has been provisioned with an organization level role as shown in
Figure 5-6.

Role Based Access Control | 103

Figure 5-6. Adding a user to an environment in Coalesce.

RBAC is a key part of maintaining a secure and well-governed
Coalesce environment. It ensures that users can only interact with
the data and environments that are relevant to their role in the data
pipeline lifecycle. But in some cases, it’s not just your users that you
want to provision to ensure your data is secure, it’s the technology
itself. In the next section, we’ll talk about how Coalesce executes
your pipelines on your data platform in a secure way.

Coalesce SQL Execution
Ensuring the technologies that you are using within your organiza‐
tion are compliant with the security requirements you demand is
critical. As a solution that is transforming data, Coalesce has access
to metadata within your data platform. However, Coalesce does
not store data from your data platform. Ever. Coalesce is strictly
executing the SQL that is generated based on the metadata from
your objects and the SQL transformations you have supplied.

In order to support SQL execution from within a browser environ‐
ment, Coalesce uses a direct proxy that forwards SQL text on behalf
of user actions submitted through the Coalesce UI to the customer’s

104 | Chapter 5: Coalesce Security and Data Governance

data platform instance. All data is encrypted via HTTPS/TLS and
data results from SQL executions are never stored by Coalesce.

When you submit a SQL execution, the browser sends the SQL
text to the Coalesce backend. After authenticating the user, Coalesce
retrieves credentials from the industry standard credential manager
and uses them to connect to your data platform. It then sends the
results back to the browser over HTTPS and TLS.

When you request to fetch data, Coalesce follows the same SQL
execution path and returns the first 100 rows to the browser for
display. Coalesce never stores the data.

As you have seen, Coalesce never stores the data it processes. It only
passes encrypted SQL and, when needed, returns a limited result set,
100 rows, to the browser.

With your users now provisioned correctly and your security in
place, it is time to focus on sharing the results of your data projects.
How do you expose that value to your stakeholders? That is exactly
what the rest of this chapter will explore.

Documentation
Documentation is an essential component of building a sustainable
data architecture, but is sometimes put aside to focus on develop‐
ment work to meet deadlines. Coalesce automatically produces and
updates documentation as developers work.

At the core of Coalesce’s documentation, it is capturing everything
about each node you have created within any project, workspace,
and environment. Information such as the database and schema of
the object, each column, data types, lineage, and even the DDL and
DML of each node is captured automatically.

However, Coalesce users can elevate their documentation further
through the use of column and node level documentation.

Column level documentation lets users add descriptive comments
and context for every column within a node. You can enter this
information in the Description column within the mapping grid of
a node, as shown in Figure 5-7. This field accepts plain text, which
you can either enter manually or generate automatically using the
Coalesce AI description tool.

Documentation | 105

Figure 5-7. Providing a column level description within Coalesce.

The same applies to node level documentation. Business users often
find it helpful when objects are clearly described, including what
they contain and how they are intended to be used. In Coalesce,
users can document a node by selecting the “Add a description” text
box located beneath the node name, as shown in Figure 5-8. Just
like with column level descriptions, users can enter this information
manually or use the Coalesce AI tool to generate a description
automatically.

Figure 5-8. Node level description within Coalesce.

Coalesce captures all of this documentation in real time and displays
it in the Docs Interface. When you open the Docs Interface, you
can view all projects, workspaces, and environments across your
Coalesce organization. Selecting any workspace or environment will

106 | Chapter 5: Coalesce Security and Data Governance

show you all of the nodes within that location, as shown in Fig‐
ure 5-9, along with the metadata associated with each node.

Figure 5-9. Each line item represents a node that has been documented
automatically in Coalesce.

By selecting a node, you can drill into a more detailed view of its
contents as shown in Figure 5-10. The Docs Interface also includes
filtering options that make it easy to find specific nodes or pieces
of documentation. This gives users the exact context they need to
answer questions, troubleshoot issues, and understand how data
flows through the project.

Documentation | 107

Figure 5-10. Documentation within a node inside of the Docs Interface
in Coalesce.

Coalesce lets users manage their organization, control access, and
view activity across all projects.

Peace of Mind
Coalesce includes intentional security measures at every step to
protect your organization, your data, and your users. In this chapter,
you learned the different ways users can authenticate into Coalesce.
You saw how to control what users can access once inside, and how
Coalesce ensures that your data is never stored, all while making
your pipelines easy to understand through clear, structured docu‐
mentation.

At this point, you have mastered the core components of Coalesce.
From setting up your workspace to building pipelines, managing
projects, and enforcing security and governance, you now have a
complete view of what Coalesce can do. In the next chapter, you
will put that knowledge to work as you explore real-world use cases
Coalesce helps organizations solve.

108 | Chapter 5: Coalesce Security and Data Governance

CHAPTER 6

Modeling Patterns and Use Cases
in Coalesce

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 6th chapter of the final book.

If you’d like to be actively involved in reviewing and commenting
on this draft, please reach out to the editor at mpotter@oreilly.com.

By now, you have set up your Coalesce account and built scalable,
production-ready pipelines. You have handled the core tasks: trans‐
forming, versioning, testing, and deploying data transformations.
The next question is, what are you building for?

The answer depends on your organization’s goals, but most teams
follow a few common architectural patterns. There is no universal
blueprint, but there are proven approaches that guide how teams
model and operate at scale.

Throughout this book, we have used a house-building analogy to
ground each phase of development. You laid the foundation, framed
the structure, and secured your belongings. Now it is time to decide
how to live in the space you created. How should the rooms be

109

arranged? What temperature should the thermostat be? What rooms
should the kids sleep in? All things anyone living in the house has
to decide, but may do a little differently than the next. That’s exactly
what we’ll be focusing on in this chapter.

This chapter shifts the focus from how you build to why, and what
comes next. It explores common patterns in modern data environ‐
ments such as migrations, dimensional modeling, and data vault
architecture. Each one addresses a different type of problem and
requires a specific approach to modeling, testing, and maintaining
pipelines over time. By the end of the chapter, you’ll have a better
understanding of the types of problems you can solve in Coalesce,
and how to take advantage of powerful off the shelf functionality to
solve your toughest problems.

Migration: From Legacy to Modern
Migrations usually start with a mix of dread and necessity. Moving
SQL logic from one platform to another often means rewriting,
refactoring, and revalidating everything. It’s slow. It’s tedious. And
it’s easy to miss things. But there are ways to break it down. Think of
migration like moving to a new house. You have multiple options:

• You pack your own boxes, use your own truck, and move every‐•
thing yourself.

• You hire movers to pack, drive, and unpack for you.•
• You throw out or sell everything and start fresh.•

All of these options are valid. Your approach depends on what
you’re moving, how urgent the move is, and how much help you
have. In data terms, that means deciding whether to rebuild, lift-
and-shift, or rearchitect.

Building New
There is a unique kind of momentum that comes with building
from scratch. No legacy models to untangle. No outdated logic to
reverse engineer. Just a clean starting point and the freedom to
design something that actually fits your data and your team.

Coalesce makes it easy to start fresh. With nodes, teams can
apply consistent modeling patterns across your architecture without

110 | Chapter 6: Modeling Patterns and Use Cases in Coalesce

rewriting the same logic over and over. Because nodes are custom‐
izable, they reflect your team’s standards, not a fixed set of rules.
Combined with Coalesce marketplace, it becomes straightforward
to define repeatable structures that still allow for edge cases.

Because Coalesce separates node configuration from the SQL logic
you write to transform your data, the process of building out
data models stays organized. You are not jumping between files or
scanning through long SQL scripts to find what changed. Instead,
changes are visual, versioned, and easy to understand.

One of the clearest advantages of starting from scratch in Coalesce
is that you avoid inheriting tech debt. Every new node benefits
from built-in lineage, clear naming conventions, and automatic doc‐
umentation. The structure you define on day one scales with the
project, rather than breaking down as complexity increases.

This is not about moving fast at the expense of long-term stability.
Coalesce makes it possible to move quickly because the system is
designed to prevent chaos later. When you build new, you are creat‐
ing pipelines that are easier to maintain, easier to test, and easier for
others to understand.

If you have the opportunity to start clean, Coalesce gives you the
structure and flexibility to get it right the first time without slowing
down.

Migrating As-Is (Lift-and-Shift)
A lift and shift is often the first step in a larger transition. Instead
of redesigning everything from the start, you focus on getting your
existing pipelines running in the new environment. It is a pragmatic
move, especially when time, complexity, or risk makes a full rebuild
unrealistic.

In Coalesce, a lift-and-shift means recreating existing logic in a
cleaner, more structured way. You bring in the SQL that already
works, but you do it with better guardrails. Clearly defined nodes
structure your SQL, streamlining business logic. And your pipelines
reflect how the data flows, not how it evolved over time.

You are not inventing something new here. You are giving your cur‐
rent data process a stronger foundation. Many teams use this phase
to wrap legacy transformations in Coalesce nodes, apply consistent

Migration: From Legacy to Modern | 111

patterns, and start building toward more modular design, even if the
core logic remains the same.

This is also the time to clean up the small things that cause friction.
Confusing joins, unexplained filters, cryptic column names, when
these show up, Coalesce gives you the structure and visibility to fix
them without losing track of the original intent.

Migrating as is does not mean standing still. By moving existing
pipelines into Coalesce with clear structure and built-in governance,
you create a stable baseline for future changes and avoid carrying
over the same problems into the next phase.

Rearchitecting for the Future
Rearchitecting often follows a lift and shift. Once everything is run‐
ning in the new environment, teams start to notice what no longer
works. The logic that made sense five years ago may not hold up
today. Business requirements change. Data volumes increase. What
used to be manageable becomes brittle, opaque, or too difficult to
extend.

In Coalesce, rearchitecting does not have to mean starting over. You
can keep what works and replace what doesn’t. Most teams begin by
creating clearer boundaries, separating raw, staging, and refined lay‐
ers, for example, or breaking monolithic SQL into smaller, purpose-
built nodes. Business logic is fully tested by the team. Naming
conventions get a second look. So does the overall shape of the
pipeline.

The visual interface in Coalesce makes this easier to manage. You
can trace dependencies across your pipeline, spot unnecessary
complexity, and understand where changes will have downstream
impact. It gives you the context you need to plan a rearchitecture
without guesswork.

This kind of work is usually incremental. Few teams rewrite their
pipelines all at once. Instead, they modernize one piece at a time,
refactoring logic, reorganizing layers, cleaning up joins and filters
as they go. Coalesce supports this approach by making changes
transparent, standardized, and reversible. You can experiment with
confidence, knowing every change is tracked and easy to roll back if
needed.

112 | Chapter 6: Modeling Patterns and Use Cases in Coalesce

Rearchitecting is about getting to a place where your pipeline is
easier to understand, easier to maintain, and better aligned with
how your organization actually uses data. Coalesce helps you do that
without throwing everything away. As you build in Coalesce, model‐
ing your data for sustainable and maintainable pipelines suddenly
becomes important.

Modeling
There is no single way to model data. The right approach depends
on your goals, your constraints, and how your team plans to use
the data. In the sections that follow, we will walk through several
important modeling paradigms: dimensional modeling, data vault,
and operationalizing AI and ML pipelines. Each one reflects a differ‐
ent way of thinking about structure, whether you are optimizing for
performance, traceability, or predictive insight. Coalesce supports
all of these approaches by giving you the tools to apply consistent
logic, enforce standards, and adapt your pipeline architecture as
your needs evolve.

Dimensional Modeling: The Foundation of Analytics
Dimensional modeling has endured because it provides clarity. It
structures data in a way that analysts, engineers, and business users
can all understand. At its core, dimensional modeling separates data
into two types of tables: facts and dimensions.

Fact tables record measurable events such as orders, page views,
revenue, or inventory levels. They are typically long, narrow tables
with foreign keys that point to dimension tables. Dimension tables
provide context. They describe the who, what, where, and when
behind each fact, such as customers, products, locations, dates, and
so on.

The result is a model that is predictable and easy to navigate.
There are two major variations of dimensional modeling: star and
snowflake. A star schema keeps dimensions directly connected to
facts. A snowflake schema organizes dimensions further into related
lookup tables, often to reflect hierarchies or reduce redundancy.
Either way, this approach gives downstream consumers a consistent
structure, and it allows business intelligence tools and SQL engines
to optimize queries more effectively.

Modeling | 113

Coalesce supports dimensional modeling not just as a concept, but
as a core design pattern. You can explicitly define fact and dimen‐
sion nodes and apply consistent standards across both. This is not
just a label, fact and dimension nodes behave in structured ways.
They follow naming conventions, align to logical layers, contain
optimized, best practice SQL, and reflect real relationships in your
data. The Coalesce interface gives you clear visibility into how these
pieces connect.

Surrogate keys, slowly changing dimensions, and timestamped
inserts, all of the essential components of dimensional modeling,
are straightforward to take advantage of using Coalesce nodes. This
becomes even more valuable as your model grows. Dimensional
models often start simple but can quickly grow in complexity. A
new metric in a fact table may rely on upstream changes across mul‐
tiple dimensions. An update to customer classification may impact
reports across several business units. With Coalesce, you can trace
any column from the final report back to the raw source. Lineage is
not just a static diagram, it is an interactive map that shows exactly
how data is transformed along the way.

Coalesce also helps enforce modeling best practices without relying
on tribal knowledge. The templates for fact and dimension nodes
reflect your team’s standards, whether that means generating busi‐
ness keys, applying audit columns, or implementing slowly changing
dimension logic. Once the template is defined, it becomes part of
how your team works, not a checklist you have to remember.

As your data model evolves, this structure is what keeps it from
becoming fragile. The strength of a dimensional model comes from
its consistency. Coalesce gives you the tools to maintain that consis‐
tency while still allowing flexibility when needed. You can make
changes with confidence, understand the impact of those changes,
and keep everything documented automatically.

So while dimensional modeling is a well-established practice, Coa‐
lesce brings it into a modern workflow. With repeatable patterns,
clear lineage, automated documentation, and strong version control,
you can build and maintain dimensional models that scale with your
organization and remain easy to work with over time.

114 | Chapter 6: Modeling Patterns and Use Cases in Coalesce

Data Vault: Designed for Flexibility and Traceability
Dimensional models work well when the scope is known and the
data is clean. But not every environment fits that mold. Sometimes
you are working with dozens of source systems, each evolving on its
own schedule. Sometimes the requirements include strict auditabil‐
ity, full historical tracking, or regulatory compliance. In those cases,
dimensional modeling alone may fall short. This is where the Data
Vault paradigm becomes essential.

Data Vault modeling is designed for flexibility, scale, and traceabil‐
ity. It separates structural elements from descriptive ones, making
it easier to adapt as systems and business logic evolve. There are
three main components of a Data Vault system: Hubs, Links, and
Satellites. Hubs store core business entities using unique business
keys. Links define the relationships between those entities. Satellites
capture descriptive attributes and track historical changes over time.

This separation allows you to ingest and structure raw data in a
way that does not require upfront assumptions about how the data
will be used. You are not forced to model for analytics on day one.
Instead, you build a persistent layer of fact that reflects the raw truth
of what happened, when it happened, and how it changed.

In Coalesce, working with the Data Vault pattern feels natural. You
can use hubs, links, and satellites as dedicated node types, each
with its own set of reusable templates and best practices. Using
these nodes, you can apply consistent logic for key generation, audit
tracking, and effective dating, without duplicating code or relying
on manual processes.

This is where Data Vault shines. It is built for change. When you add
a new source system or onboard a new satellite, you do not need to
redesign your existing structure. You simply extend the model. The
core business keys remain stable. The lineage remains intact. And
every change is versioned, timestamped, and traceable.

Data Vault is not optimized for reporting speed out of the box. That
is not its goal. Its strength lies in preserving the integrity and his‐
tory of your data. It creates a single, trusted layer that downstream
models, dimensional or otherwise, can pull from with confidence.
In regulated industries, or any environment where data lineage and
historical accuracy matter, this becomes critical.

Modeling | 115

Coalesce enhances that traceability by using lineage that is not a
static diagram, but contains a fully interactive map of where each
field came from and how it was transformed. Combined with
automatic documentation, version control, and Git integration, it
becomes easy to reconstruct the state of your data model at any
point in time.

The modular structure of the vault also makes it easier to manage
complexity as your architecture grows. You can incrementally build
and refactor hubs, links, and satellites without disrupting down‐
stream models. Coalesce supports this kind of modular thinking,
giving you the tools to build a flexible, extensible data backbone
without losing control.

So when the priority is not just reporting, but long-term data stew‐
ardship, Coalesce and Data Vault are a natural match. They give
you the structure, visibility, and discipline to scale confidently, even
when everything else is changing, especially in the world of main‐
stream machine learning and artificial intelligence.

Wrapping Up
Architectural patterns are not about following trends. They are
about solving the real problems that arise when data volume grows,
systems multiply, and business needs evolve. Whether you are start‐
ing fresh, reworking legacy logic, modeling for analytics, preparing
AI features, or integrating complex external sources, the patterns
in this chapter give you a framework for thinking clearly about
structure.

Coalesce is built for exactly this kind of work. It gives you a way
to standardize without getting stuck. Templates let you codify best
practices without locking you into rigid abstractions. Visual lineage
helps you understand what is happening and why. And the ability to
wrap even advanced functionality, like AI functionality, into nodes
means you are never stitching things together on the side.

The best pipelines are not just technically correct. They are under‐
standable. They are maintainable. And most importantly, they are
adaptable. That is what sets long-lived architectures apart, they sup‐
port change without falling apart.

If you have made it this far, you are likely already solving meaning‐
ful problems with data. You learned in this chapter how to think

116 | Chapter 6: Modeling Patterns and Use Cases in Coalesce

about migrations within Coalesce. You also learned about some of
the common patterns that Coalesce seamlessly supports. These pat‐
terns are just one way to think about what comes next. Whether you
are scaling up, branching out, or just trying to keep things clean as
complexity grows, Coalesce gives you the structure to stay organized
and the flexibility to move fast.

You’ve built your data products with confidence. In the next chapter,
you’ll see how your team uses them, learn how to govern them
more effectively, and use that insight to iterate and improve your
pipelines.

Wrapping Up | 117

CHAPTER 7

Wrapping It All Up with the
Coalesce Catalog

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 7th chapter of the final book.

If you’d like to be actively involved in reviewing and commenting
on this draft, please reach out to the editor at mpotter@oreilly.com.

At this point, you have everything you need to own your data trans‐
formations—whether you’re a team of one or managing a hundred
engineers. In Chapter 5, you locked down governance and security.
Now it’s time to take the final step: making your data truly discov‐
erable and usable across your business. That’s where the Coalesce
Catalog comes in.

This chapter is all about helping you take action, not just on the
data you’ve transformed, but the rest of the systems in your stack.
The Coalesce Catalog is your window into the entire data ecosystem.
Think of it like the index of a book (hey, like this one!). It tells you
what’s inside, where to find it, and how everything fits together.

119

Or, to bring back our house analogy, this is where you stop build‐
ing and start living. The Coalesce Catalog shows you what’s in the
fridge, where the remote’s hiding, and how clean the kids actually
left their rooms. You can even ask it questions and it won’t talk back.

By the end of this chapter, you’ll know how to use Coalesce Catalog
to unlock the full value of your transformed data, support your
stakeholders, and close the loop between creation and consumption.
Let’s get into it.

Getting Set Up with Coalesce Catalog
Before you can explore metadata, digest documentation, and start
understanding lineage, you’ll need to connect Coalesce Catalog to
your data sources. Setup is fast and straightforward. In this section,
we’ll walk through how to access your workspace and connect to
your data stack to start enriching your catalog from day one.

Once that foundation is in place, you’ll be ready to navigate the
catalog, support your team, and empower business users to answer
their own questions, anytime they need.

Accessing Your Workspace
Coalesce Catalog is a cloud-based application, just like the Coalesce
transformation product you’ve learned throughout this book. You’ll
either receive an invite link via an email or be prompted to sign in
using your work email or Single Sign-On (SSO).

During onboarding, Coalesce will typically help configure key set‐
tings for your organization—like enabling approved email domains
or setting up SSO. Once that’s in place, users can self-serve and
create accounts with minimal friction.

User roles are intentionally simple and most users can explore and
document your data out of the box. Admins have extra permissions
for managing integrations and settings, but there’s no complicated
access model to learn.

Connecting to Your Data Stack
Once you’re in, the next step is connecting your primary data
source. Coalesce Catalog supports a wide range of databases and

120 | Chapter 7: Wrapping It All Up with the Coalesce Catalog

warehouses, but the setup process is consistent no matter which one
you use.

Start by creating a dedicated read-only account in your database.
This account only needs access to metadata, like schemas, tables,
columns, and query history. It should be restricted from accessing
any actual data. It’s highly advised to follow along with the onboard‐
ing steps of the tooling you are integrating with Coalesce Catalog
as each step will have dedicated support for the system you are
integrating.

Once the account is ready, open the Integrations section in Coalesce
Catalog, as shown in Figure 7-1, choose to connect a database,
and enter your connection details. These typically include a host,
credentials, and any necessary configuration values. Credentials are
encrypted, and only metadata, not data, is ever ingested.

Figure 7-1. The integrations page in Coalesce Catalog. Integrate to over
60+ modern data stack systems.

After saving the connection, Catalog runs an initial sync. It scans
your database for structure, databases, schemas, tables, columns,
and collects query history to begin building usage insights and
lineage. If your environment is large, the first sync may take a bit,
but you’ll be notified once it’s complete.

From then on, the catalog stays up to date automatically. Changes
like new tables, renamed columns, or updated usage patterns are
picked up on the next scheduled sync. If needed, you can fine-tune

Getting Set Up with Coalesce Catalog | 121

which parts of your environment are scanned by applying filters to
include or exclude specific schemas or tables.

You can follow the same process to connect additional tools—
whether that’s another database, your BI platform, or something
else in your data stack. Just choose the integration, provide the
credentials, and let Coalesce Catalog handle the rest.

Metadata Management and Data Lineage
Coalesce Catalog is built to simplify metadata management and
illuminate how data flows across your environment. In this section,
you’ll learn how metadata is ingested, how to document and enrich
your assets, and how to use the lineage graph to bring clarity and
confidence to your data.

Documenting Data Assets
Coalesce Catalog makes it easy to enhance your metadata so it’s not
just accurate, but genuinely useful. Each table, dashboard, and col‐
umn can include rich-text documentation as shown in Figure 7-2.

Figure 7-2. Using rich-text to document columns and providing con‐
text to the table.

When documenting common fields like “id” or “created_at,” Coa‐
lesce Catalog suggests existing definitions from similar columns
elsewhere in your catalog. You can choose to reuse or propagate

122 | Chapter 7: Wrapping It All Up with the Coalesce Catalog

those descriptions to other same-named columns to maintain con‐
sistency. If you need to document many fields at once, the metadata
editor provides a spreadsheet-style view to streamline updates.

AI support can help speed up your documentation process. The
“Describe with AI” feature drafts suggestions based on context and
naming conventions. You can review, edit, or regenerate as needed
as it’s designed to help, not replace, your judgment.

Within each asset, you can use tags to help categorize assets by
things like business domain, sensitivity, or quality status. Then, you
can assign owners to each asset to ensure accountability, or take
advantage of frequent users surfacing automatically so you can iden‐
tify subject-matter experts even if they aren’t officially assigned.

To help teams track progress, Coalesce Catalog also calculates a
documentation completeness score. This score is based on criteria
like whether an asset has an owner, a table description, and column-
level documentation. While all of this documentation is helpful for
gaining contact, one of the best ways to understand how data assets
came to exist is by understanding the lineage.

Understanding Data Lineage
Lineage is one of the most powerful features in Coalesce Catalog. It
shows how data moves from source to transformation to consump‐
tion—helping you debug issues, validate assumptions, and avoid
downstream breakage.

You can explore lineage in two main ways: the list view and visual
graph. The list view gives you a summary of upstream and down‐
stream relationships. The visual graph brings everything to life as
shown in Figure 7-3. It starts focused, just the selected asset, and
lets you incrementally expand upstream or downstream by clicking
the + or - buttons. This makes it easy to trace dependencies or inves‐
tigate impact without getting overwhelmed. Different asset types
are visually distinguished, and interactive elements help you move
through the lineage step by step.

Metadata Management and Data Lineage | 123

Figure 7-3. Using lineage to understand the flow of your data from
source to consumption.

With this lineage, it’s easy to perform impact analysis to help you
avoid breaking dashboards or reports by showing what depends on
a dataset before you change it. You can also perform root cause
analysis allowing you to trace confusing or incorrect values back
to their source. And for governance, lineage provides visibility into
how sensitive data flows through the system, supporting compliance
efforts and data quality reviews.

Quality and Governance Metadata
Coalesce Catalog brings in quality and governance signals so you
can make informed decisions about what data to trust and how to
use it. If your environment includes testing or monitoring tools,
Coalesce Catalog can surface quality results directly alongside assets.
This might include test outcomes, data freshness indicators, or
known issues—giving users immediate confidence (or healthy skep‐
ticism) about what they’re looking at.

Stewards or admins can certify trusted datasets by selecting the
green checkmark in the detail pane of any table or view, which
adds a visible badge for users to identify and gain confidence in the
data they are using. Conversely, deprecated assets are clearly flagged
allowing users to reach out for better guidance or find a certified
table. These labels steer teams toward the right sources of truth and
can be applied to any asset, as shown in Figure 7-4..

124 | Chapter 7: Wrapping It All Up with the Coalesce Catalog

Figure 7-4. Labeling a table as certified (green), containing PII (blue),
and a personal favorite (red).

You can flag sensitive data, like personally identifiable information
(PII), either automatically or manually. Coalesce Catalog may detect
fields like email or ID numbers based on pattern recognition, but
confirmation by data stewards ensures accuracy. These PII flags
appear in search, filters, and lineage, helping teams protect and
handle data responsibly.

This is another case where lineage can support governance work‐
flows. Teams can track where sensitive data originates and where
it flows, making it easier to manage policies like data retention or
privacy compliance. Seeing this full path of a dataset builds trust and
enforces transparency.

By unifying documentation, lineage, quality signals, and governance
context, Coalesce Catalog becomes a single source of truth for how
your data works—and how it should be used. This in turn promotes
self-service discovery and a core driver in collaboration for all teams
working with your data.

Metadata Management and Data Lineage | 125

Collaboration and Data Discovery
Fostering a data-driven culture takes more than cataloging assets, it
requires making data easy to find, understand, and trust. Coalesce
Catalog is designed to encourage collaboration and simplify discov‐
ery so everyone, from engineers to analysts to business users, can
participate in growing the organization’s knowledge base.

Collaborative Features
Documentation in Coalesce Catalog is treated as a team sport. Any‐
one can contribute, ask questions, or surface issues, which makes
it easier to crowdsource knowledge and keep your documentation
current.

Every data asset includes a comment section where users can ask
questions or start discussions. These are threaded conversations that
stay visible for others, reducing repeated questions and giving future
users valuable context. For example, a business user might flag an
unexpected number, and an analyst could reply with an explanation
or link to related data.

When documentation is missing, users can request it directly from
the asset. This sends a notification to the assigned owner or data
team, creating a lightweight workflow to close documentation gaps.
Once the request is fulfilled, the user is notified, keeping the loop
tight and productive.

If there’s a problem with a dataset, like unexpected nulls or incorrect
values, users can report an issue directly from the catalog. This
keeps issues tied to the source instead of scattered in Slack threads
or buried in emails. When the issue is resolved by your data or
engineering team, it can be closed with context for others to review
later.

All of these activities generate notifications. Whether it’s a comment,
mention, request, or issue, Coalesce Catalog ensures the right users
are alerted, either in-app, via email, or through connected tools like
Slack. Notifications can also be team-based, so entire groups are
notified for certain tags or domains.

The Slack integration plays a major role in bringing Coalesce Cata‐
log into your team’s daily workflow. Notifications can be routed to
Slack channels, and users can search the catalog directly in Slack via

126 | Chapter 7: Wrapping It All Up with the Coalesce Catalog

the native Coalesce Catalog Assistant. For example, asking “do we
have any dashboards on regional sales” in a data channel may return
a few results with direct links of high relevance. This dramatically
reduces the number of one-off data questions.

These features work together to create a shared sense of responsibil‐
ity and community around data. Producers document and maintain,
consumers ask and learn, and the catalog becomes more useful and
mature over time. But sometimes users need to dig deeper than just
asking a question in Slack. In this case, they can use catalog’s rich
discovery features to help answer their questions.

Discovery Features
Beyond collaboration, Coalesce Catalog helps users find what they
need, even when they don’t know exactly what they’re looking for.
The search experience is tuned to prioritize the most useful results
where popular assets, certified datasets, and frequently accessed
resources appear higher in results, helping users zero in on trusted
sources. If you’re new to the catalog and search for “Sales,” the most
reliable table or dashboard will rise to the top.

On the homepage or in search results, Coalesce Catalog can high‐
light trending assets, datasets or dashboards with a spike in usage.
This visibility helps teams stay aligned during reporting cycles or
major projects. For each asset, you can see who uses it most fre‐
quently. This makes it easy to find someone to reach out to when
you have questions. Whether you’re new to the company or just
working with a new domain, knowing who uses the data helps you
find context fast.

The knowledge section serves as a data wiki for your entire data
team. It’s the place to define business terms like “active users” or
“net revenue,” and to link those definitions directly to the datasets
or dashboards that implement them. If someone searches a business
concept, they might land on a glossary page that explains the metric
and links out to relevant data assets. This is incredibly beneficial
in providing a singular definition for metrics used throughout the
organization.

The Catalog browser extension lets you bring Coalesce Catalog into
other tools. While working in a database UI or BI tool, the extension
will show you all of the relevant information documented in the

Collaboration and Data Discovery | 127

catalog within the page you are viewing as shown in Figure 7-5. This
provides in-context help without switching tabs.

Figure 7-5. The Catalog assistant follows you into the tools you are
already working in, providing context even when you’re not directly in
the catalog.

If enabled, the AI Assistant adds another layer to data discovery.
Users can ask natural language questions like “how do we calculate
churn rate?” and get context-rich answers drawn from your docu‐
mentation. This is especially helpful for non-technical users who
aren’t sure what to search for. Over time, Coalesce Catalog learns
from these usage patterns and it can recommend assets, highlight
similar datasets, or identify potential overlaps. This means every
user’s experience is enhanced with the use of AI throughout each
touchpoint of the Coalesce Catalog.

Using the AI Assistant for Data Discovery and
Exploration
The AI Assistant in Coalesce Catalog acts like a knowledgeable
colleague who is available anytime. Using natural language, anyone
can explore the catalog, uncover definitions, trace data lineage, or
find the right dashboard without knowing table names or writing
SQL.

The AI Assistant lets you search the catalog in plain English as
shown in Figure 7-6. Whether you’re looking for “monthly revenue
by region” or “customer churn rate,” it interprets your intent and
surfaces the most relevant datasets, dashboards, or glossary terms.

128 | Chapter 7: Wrapping It All Up with the Coalesce Catalog

It’s tuned to your company’s language and structure, so it under‐
stands business context and not just schema names.

Figure 7-6. Using the AI Assistant to search the catalog in plain
English.

It also acts as an instant Q&A tool. You can ask questions such as
“How is churn rate calculated?” and it’ll respond with the official
definition from your knowledge base, along with links to relevant
assets. If you’re not sure where customer purchase history is stored,
you can ask and the assistant will locate the right datasets for you.

Beyond answering questions, the AI Assistant also connects the
dots. Ask about a dataset, and it might tell you what dashboards use
it, who owns it, or what glossary terms are related. If you’re already
viewing a table, it adapts to you, letting you ask things like “What
upstream source does this come from?” or “Are there issues reported
on this asset?”

You can access the assistant from within the catalog interface,
whether browsing a table, searching across assets, or chatting via
integrated tools like Slack. This allows users to take advantage of all
of the rich-context stored in Catalog regardless of the system they
are working in, meeting them where they already work. In doing so,
the entire data transformation cycle is brought full circle allowing,

Using the AI Assistant for Data Discovery and Exploration | 129

users to have clarity into even the most complex data transforma‐
tions, even if they don’t know how to write SQL themselves.

From Chaos to Clarity
You’ve seen it all at this point. You know what it looks like to build
a modern, high-functioning data practice using Coalesce. From
hands-on SQL transformations to catalog-wide collaboration, this
guide has walked you through the full lifecycle of managing, docu‐
menting, and delivering trusted data at scale.

At its core, Coalesce is designed to take the repetitive, brittle, and
fragmented parts of data work and turn them into something struc‐
tured, powerful, reusable, and automated. You started by learning
how Coalesce transformation gives engineers a clean, visual inter‐
face for building logic while still generating code that’s precise
and production-ready. With every node you added, every column
you documented, and every relationship you configured, you built
something bigger than a data pipeline, you built a process others can
follow.

Then with Coalesce Catalog, you learned how to capture the entire
context around your data: where it comes from, how it’s used, who
owns it, and what it means. No more scattered documentation.
No more Slack messages asking what “ARPU” stands for. No more
hoping someone wrote it down in a Google Doc two quarters ago.
Catalog ties everything together, your lineage, your logic, your glos‐
sary, and puts it at your fingertips. And with the AI Assistant layered
on top, even non-technical users can find what they need with a
simple question.

Together, these two parts, Transformation and Catalog, create a
feedback loop. When your transformations are well-documented,
they’re easier to understand. When they’re easier to understand,
they’re easier to trust. And when people trust the data, they use it.
That’s how you shift your organization from pipeline firefighting to
true data enablement.

This isn’t about moving data from point A to point B. It’s about
creating systems people can understand, build upon, and rely on. It’s
about letting engineers scale their output without adding complex‐
ity. It’s about letting analysts explore without gatekeeping. It’s about

130 | Chapter 7: Wrapping It All Up with the Coalesce Catalog

empowering business users to make decisions without waiting in
line.

As you move forward, here are a few things to keep in mind:

• Build with clarity. Your future teammates will thank you.•
• Don’t treat documentation as a separate task. When it’s part of•

the workflow, it actually happens.
• Make the catalog the first stop for every data question.•
• Use lineage not just to debug, but to build trust.•
• Enable business users to answer their own questions with the AI•

assistant. This gives you more time to work on high-value tasks.

What you build using Coalesce isn’t just a set of tables and models,
it’s a foundation. One that enables faster development, better gover‐
nance, and a more confident data culture. So whether you’re scaling
a team of 100 or holding down the fort as a team of one, Coalesce
gives you the structure, automation, and transparency to do more,
with less friction.

Now it’s your turn to carry that momentum forward. Keep iterating.
Keep sharing knowledge. Keep raising the bar for what good data
work looks like in your organization.

Now go build something remarkable.

From Chaos to Clarity | 131

About the Author
Josh Hall is a data engineer and product marketer that loves to
help others learn, explore, and understand the power and impact
of the world of data. He spends much of his time creating video
content to help others understand technology, writing blogs to distill
technical concepts, and traveling to speak at data conferences and
user groups. With over half a decade of data consulting experience
under his belt, and several more years with data products, Josh
wants to take all of his hard earned knowledge and allow others to
expedite and amplify their data journey.

	Cover
	Coalesce
	Copyright
	Table of Contents
	Brief Table of Contents (Not Yet Final)
	Chapter 1. Getting Started in Coalesce
	The User Interface
	The Projects Page
	The Build Interface
	The Deploy Interface
	The Docs Interface
	The User Menu

	Projects
	The Purpose of Projects
	How to Set Up a Project

	Workspaces
	Build Settings
	Workspace Settings

	Storage
	Storage Locations
	Storage Mappings

	Adding Users
	Adding Data Sources
	Building on Your Foundation

	Chapter 2. Coalesce Core Concepts
	Column-aware Architecture
	Data Patterns
	Impact Analysis and Lineage
	Scale and Governance

	Nodes
	Node Architecture
	Importance of nodes

	The Pipeline Development Approach
	Reusability

	The Development Workflow
	Knowledge Sync Complete

	Chapter 3. Building Data Pipelines in Coalesce
	The Build Interface
	Adding Data Sources
	Adding Nodes to Your Pipeline
	Stage
	Persistent Stage
	Dimension
	Fact
	View
	Coalesce Marketplace
	Putting Node Types to Work
	The Anatomy of a Node

	Data Transformations in Coalesce
	Column Level Transformations
	Node Level Transformations

	Joins
	Bulk Editing
	Data Transformation in Process

	Chapter 4. Managing Data Pipelines in Coalesce
	Managing Nodes Using Views
	The Graph
	The Node Grid
	The Column Grid

	Subgraphs
	Selector Queries
	Column Level Lineage
	The Problem Scanner
	Version Control
	Macros and Parameters
	Macros
	Parameters

	Testing
	Jobs
	Environments
	Deploying
	Refreshing Your Pipeline

	The Makings Of A Pro

	Chapter 5. Coalesce Security and Data Governance
	Account Access
	Single Sign-On
	Multi-Factor Authentication

	Role Based Access Control
	Coalesce SQL Execution
	Documentation
	Peace of Mind

	Chapter 6. Modeling Patterns and Use Cases in Coalesce
	Migration: From Legacy to Modern
	Building New
	Migrating As-Is (Lift-and-Shift)
	Rearchitecting for the Future

	Modeling
	Dimensional Modeling: The Foundation of Analytics
	Data Vault: Designed for Flexibility and Traceability

	Wrapping Up

	Chapter 7. Wrapping It All Up with the Coalesce Catalog
	Getting Set Up with Coalesce Catalog
	Accessing Your Workspace
	Connecting to Your Data Stack

	Metadata Management and Data Lineage
	Documenting Data Assets
	Understanding Data Lineage
	Quality and Governance Metadata

	Collaboration and Data Discovery
	Collaborative Features
	Discovery Features

	Using the AI Assistant for Data Discovery and Exploration
	From Chaos to Clarity

	About the Author

