

Build a supercharged data foundation
and cut through the noise of data
development with Coalesce.

Deliver data projects
10x faster – without
creating tech debt

Discover the future of data
transformations at Coalesce.io

https://coalesce.io

With Early Release ebooks, you get books
in their earliest form—the author’s raw and

unedited content as they write—so you can take
advantage of these technologies long before the

official release of these titles.

Josh Hall

Accelerating Data Pipeline
Development

Deliver Data Projects Faster Without
Creating Tech Debt

979-8-341-60874-0

[LSI]

Accelerating Data Pipeline Development
by Josh Hall

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Aaron Black
Development Editor: Melissa Potter
Production Editor: Kristen Brown

Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Kate Dullea

September 2025: First Edition

Revision History for the Early Release
2025-03-11: First Release
2025-04-02: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9798341608740 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Accelerating Data
Pipeline Development, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Coalesce. See our state‐
ment of editorial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9798341608740
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Brief Table of Contents (Not Yet Final). vii

1. Getting Started in Coalesce. 1
The User Interface 2
Projects 7
Workspaces 10
Storage 13
Adding Users 15
Adding Data Sources 16
Building on Your Foundation 18

2. Coalesce Core Concepts. 19
Column-aware Architecture 20
Nodes 23
The Pipeline Development Approach 31
The Development Workflow 33
Knowledge Sync Complete 34

3. Building Data Pipelines in Coalesce. 35
The Build Interface 36
Adding Data Sources 38
Adding Nodes to Your Pipeline 41
Data Transformations in Coalesce 55
Joins 58
Bulk Editing 61
Data Transformation in Process 64

v

Brief Table of Contents
(Not Yet Final)

Chapter 1: Getting Started in Coalesce (available)

Chapter 2: Coalesce Core Concepts (available)

Chapter 3: Building Data Pipelines in Coalesce (available)

Chapter 4: Managing Your Pipeline—Best Practices (unavailable)

Chapter 5: Common Use Cases (unavailable)

Chapter 6: Security and Data Governance (unavailable)

Chapter 7: Conclusion (unavailable)

vii

CHAPTER 1

Getting Started in Coalesce

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the con‐
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at mpot‐
ter@oreilly.com.

Just like the foundation that supports a house, Coalesce has founda‐
tional components that support your development of data products.
This chapter will lay the groundwork for the rest of this guide,
ensuring you have the tools you need to build end-to-end data
pipelines. In it, you will learn about projects and workspaces, which
are the core of the development experience in Coalesce. You will
discover how to connect Coalesce to your data platform and make
your data ready for development. You’ll also see how you can work
with the rest of your data team to build nodes for all your data
transformation needs.

Equipped with this knowledge, you’ll be able to get started develop‐
ing your data in Coalesce and have a foundational understanding

1

for the rest of topics discussed in this guide. Let’s start by learning
about the user interface.

The User Interface
Coalesce provides a graphical user interface (GUI) that enables
you to develop your data while giving you the flexibility to write
SQL. The interface is divided into different segments which provide
support for different functions throughout the data development
lifecycle. These segments include:

• The Projects Page•
• The Build Interface•
• The Deploy Interface•
• The Docs Interface•

You also have the ability to manage your Coalesce organization and
users from the user menu interface using Org and User Settings.
In this section, you’ll explore each of the segments of the Coalesce
interface.

The Projects Page
The projects page is the default landing page when logging into
Coalesce. This page will display any of your organization’s projects
that you have access to. Projects in Coalesce give you the flexibility
to organize your data initiatives for a specific purpose of team goal,
as shown in Figure 1-1. Don’t worry if you can’t make out all the
details here, we’ll dig into these screens in more detail shortly.

2 | Chapter 1: Getting Started in Coalesce

Figure 1-1. The projects page of Coalesce.

The Build Interface
The build interface is where you will spend time developing your
data products and building node graphs and pipelines as shown in
Figure 1-2. It can be accessed by launching any workspace from the
projects page. Users can easily manage each aspect of a data pipeline
from the build interface, including creating jobs and subgraphs.

Figure 1-2. The build interface in Coalesce displaying various nodes.
Don’t worry if you can’t make out all the details here, we’ll dig into
these screens in more detail shortly

The Deploy Interface
The deploy interface is where you can deploy your data projects
from the desired state in your git repository, and see a history of
your pipeline’s deployments and refreshes from the feed on the right

The User Interface | 3

side of the screen as shown in Figure 1-3. This interface contains a
dashboard for any environment you create, allowing you to see the
current status of job runs as well as allowing you to schedule job
refreshes.

Figure 1-3. The deploy interface where you can manage and monitor
your data projects. Don’t worry if you can’t make out all the details
here, we’ll dig into these screens in more detail shortly

The Docs Interface
The docs interface captures automatic, real-time documentation
about each project and environment in your Coalesce organization.
You can find information about each project created, such as the
database and schema, column names and descriptions, and even
data definition language (DDL) and data manipulation language
(DML) as shown in Figure 1-4.

4 | Chapter 1: Getting Started in Coalesce

Figure 1-4. The docs interface displaying all of the workspaces and
environments that have been documented

The User Menu
As a user within Coalesce, you will have access to the user menu.
The user menu can be accessed in the upper right hand corner,
denoted by the user icon as shown in Figure 1-5. Within the user
menu are the Organization and User settings of your organization.

The User Interface | 5

Figure 1-5. The user menu opened to display User and Organization
settings

6 | Chapter 1: Getting Started in Coalesce

Organization settings provide management access to the following
controls for your Coalesce organization:

• User management – adding, removing, or modifying users•
• Single Sign-On•
• Preferences – such as the Coalesce parser sample size•

User settings provide you with the ability to manage your individual
user with the following controls:

• Configuration of your Git settings•
• Support information about your Coalesce account•
• Changing your password•

With the ability to navigate the Coalesce interface, you can now dive
into setting up your first Coalesce project for developing your data.

Projects
You learned about the projects page in the previous section, but
now it’s time to take a step further to learn more about projects.
Projects give you the ability to organize your data development
in a structured way, similar to how folders allow you to organize
documents in Google Drive. In this section, you will learn how to
use projects, as well as how to set up a project for your own data
development.

The Purpose of Projects
Projects provide multiple advantages for data teams developing
their data. The first of these advantages is architectural. By utiliz‐
ing projects, you can decide how your data development processes
should be architected.

For some data teams, this means organizing projects by the initia‐
tives that the data team is working on. Others may want to imple‐
ment a data mesh pattern and use projects to separate each domain
of the business. Still others may want different teams within the
organization to be managed through separate projects as shown in
Figure 1-6. Regardless of the organization pattern, you must have at
least one project in order to develop your data.

Projects | 7

Figure 1-6. Projects in Coalesce managed by the team working on the
project

Another advantage of projects is version control. Each project in
Coalesce is integrated with your version control system such as
GitHub. You will integrate a git repository for each project that you
create. This allows each project to be managed separately from the
others while providing version control for the specific purpose of
the project.

While it is possible to skip this integration, your development expe‐
rience will be limited to a singular workspace. Coalesce does not
recommend developing this way.

The last advantage we’ll discuss is role based access control, or
RBAC. RBAC allows your Coalesce administrators to determine
which users should have access to which projects, as well as deter‐
mining which level of access each user should have. This provides
granular control for all of your data development initiatives.

8 | Chapter 1: Getting Started in Coalesce

How to Set Up a Project
Now that you know when to use a project, let’s talk about how to
set one up. If you have never configured a Git account in Coalesce
before, you will need to do this first. To configure a Git account in
Coalesce, navigate to the user settings. Within the version control
section, select Add New Account. You can follow the instructions on
the setup modal to provide the information necessary to configure
your Git account as shown in Figure 1-7.

Figure 1-7. The Git setup modal in Coalesce

From the projects page, click on the plus + button next to the
Projects header. This will open the project configuration workflow.
Here you’ll give your project a meaningful name, select the data
platform you want to connect Coalesce to, and provide any descrip‐
tive information as shown in Figure 1-8.

Projects | 9

Figure 1-8. The Project set up workflow where you select your data
platform and supply a name and description

Next, you’ll need to provide the Git repository URL from your
version control system. You can skip this step to create a project
without version control, but I don’t recommend this. Once you
supply the Git repository URL, you can select a Git account config‐
uration from Coalesce. Once you have selected your Git account,
your setup is complete and you can complete the project setup
workflow.

Workspaces
With your new knowledge of projects, you can now move on
to setting up a workspace for your data development projects.
A workspace is a sandbox environment where you can complete
the development of your data. Each workspace has its own graph,
storage locations, macros, node types, data platform connection
configuration, and Git branch – all of which you will learn about
in subsequent sections. You can create multiple workspaces to work
on different tasks and merge them into your codebase. In order to
begin building your data pipelines, you will need to connect your
workspace to your data platform. Let’s go over how to do that now.

Within any project, select the Create Workspace button in the upper
right corner of the project – this will open the workspace creation
workflow. You will be asked for a workspace name and description.
Next, you will select the branch and commit you want to create your
new workspace from. For example, you may want to create a work‐
space from your main branch in order to design a new forecasting

10 | Chapter 1: Getting Started in Coalesce

pipeline in your data warehouse. Once you have selected the branch
and commit, you will supply the name of the new branch you wish
to create and finish the creation of the workspace.

With a workspace created, you can now connect it to your data
platform. By clicking on the gear cog icon next to the workspace
Launch button, you can provide the information about your data
platform connection. In the case of the Figure 1-9, this workspace
is connected to Snowflake, but Coalesce supports multiple different
data platforms.

Figure 1-9. Connecting your workspace to your data platform. In this
case, Snowflake

Coalesce supports multiple different authentication types. The two
most common are OAuth and Username and Password. Once you
have supplied Coalesce with your account information and connec‐
tion criteria, you can test the connection to your data platform.
Once successful, you are ready to map your workspace to the data
that exists in your data platform.

Once you have connected your workspace to your data platform,
you can select the blue Launch button to enter the build interface.
Before you can begin your data development in the build interface,
there are a few more configuration items to complete. You can
find these items in the Build and Workspace settings. We’ll quickly
explore each of these.

Workspaces | 11

Build Settings
The build settings page can be accessed by clicking the gear cog
icon in the lower left corner of the build interface. Within the build
settings you can manage all aspects related to development within
your workspace. This includes:

• Storage Locations and Storage Mappings•
• Development Workspaces•
• Environments•
• Macros•
• Node Types•
• Packages•

Each of these items has their own settings which can be configured
by selecting each item.

Workspace Settings
Your workspace settings provide management for the connection
to your data platform. These workspace settings can be accessed in
one of two ways. You can either select the gear icon next to the
workspace name, or select the same icon next to the workspace
in the Workspace selection from the Build Settings as shown in
Figure 1-10.

Figure 1-10. Where to open the workspace settings inside of a work‐
space

12 | Chapter 1: Getting Started in Coalesce

Now that you know where all of the settings are available in your
workspace, you can finish the final configuration of your workspace
to begin building your data pipelines.

Storage
So far you have created a project and workspace and connected the
workspace to your data platform. But now you need to tell your
workspace what data in your platform you want to develop with.
This is where storage locations and storage mappings come into
play.

Storage Locations
Storage locations are a logical representation of a database and
schema in your data platform. You can think of them as the glossary
that points to the chapters in a book. Storage locations themselves
don’t contain any data or perform any action on their own. Instead,
they act as logical containers for the databases and schemas you
want to use in your data pipeline development.

For example, you may have a database and two schemas within
that database which contain source data for a pipeline you wish to
develop. You want the results from your data pipeline to be output
in a different database and schema. In this case, you could use three
storage locations, two for the source data and one for the output or
target destination as shown in Figure 1-11.

Figure 1-11. Storage locations created to be mapped to physical desti‐
nations in your data platform

Storage locations can also be used for other use cases as well. For
example, if your organization uses a medallion architecture, you can
have a storage location for each level of your architecture i.e. bronze,
silver, gold. Or if you leverage a staging layer in your data pipelines,

Storage | 13

you could have a staging storage location where all staging tables are
created in the same location.

You will notice that there is always a default storage location. This is
the location that, unless configured otherwise, all tables in your data
pipeline will be created within by default.

It’s important to note that storage locations cannot be renamed once
they are created.

Once your storage locations are created, you can map each storage
location to a physical destination in your data platform using stor‐
age mappings.

Storage Mappings
As you just learned, storage locations are just logical containers
that can point to physical locations in your data platform. Storage
mappings are what tie your storage locations to a database and
schema in your data platform. To configure storage mappings for
your workspace, you will need to access your workspace settings and
select Storage Mappings.

Each of the storage locations you have created will show up as an
item to be mapped to your data platform. For each storage location,
you can select the database and schema that you want each to point
to as shown in Figure 1-12. Ensure that your default storage location
is mapped to a database and schema where you expect your tables to
be output.

14 | Chapter 1: Getting Started in Coalesce

Figure 1-12. Mapping physical databases and schemas to the storage
locations previously created

Storage mappings can be updated at any time from the workspace
settings. You can also add more storage locations and map them
in the same way described here. For this guide, we will be using a
fictional foodtruck company dataset for our illustrations,where our
data sources are the customer and POS data and our target storage
location is a development database and schema. We can deploy this
to a production environment later on.

Adding Users
You now have a fully configured and ready for development project
and workspace. With your data ready for development, you can add
your team into your Coalesce account to collaborate alongside them.
To add users, you will need to access the Org settings from the User
Menu. As a Coalesce administrator, you will be able to add users to
your Coalesce account and assign them appropriate roles.

Table 1-1 provides guide to user roles in Coalesce and the permis‐
sions that they contain.

Adding Users | 15

Table 1-1. Coalesce User Roles and Associated Permissions

Role Permissions Summary Recommended For
Organization
Administrator

The creator of the Coalesce App is automatically assigned
as organization administrator.
Only organization administrators can add other users,
including other organization administrators.
They have full access to all functionality in Coalesce.

Full administrative
control

Organization
Contributor

They can’t add new users to the organization.
They have access to read documentation, create API
tokens, user settings, and Git account information.
They will be able to set up a project, configure Git, add
members to projects,and oversee work.
They’ll only have access to the projects they
create themselves. If there are multiple organization
contributors, they will need to share access with the
organization contributor.

Managers who decide
how each person will
contribute to a
project.

Organization
Member

This is the default role. They can edit Git account
information, create API tokens, and read documentation.

Default Role

Now that your users are added into your workspace with the proper
permissions, your team can begin building data products by adding
data sources

Adding Data Sources
With your team ready to collaborate in Coalesce and your work‐
space ready to develop your data, you can begin adding data sources
to your graph. You can do this by launching your workspace and
selecting the plus + button in the upper left corner of the build
interface. This will open the add data sources modal, which will
display all of the storage locations you mapped your data to, and the
objects available in those locations as shown in Figure 1-13.

16 | Chapter 1: Getting Started in Coalesce

Figure 1-13. Data sources modal showing all of the objects available
from each of the storage locations configured.

You can select as many or few data objects as you want to add to
your data pipeline. Once you have selected the data sources you
want to work with, you can add them to our graph. Coalesce will
add each object into your graph as a node. In the next chapter of this
guide, we will discuss what a node is in detail, but for now, all you

Adding Data Sources | 17

need to know is that it’s a visual representation of the objects you
have added into your graph.

Building on Your Foundation
This chapter laid the foundation for all the components you will
be using in Coalesce. In it you learned how to navigate the user
interface and how each segment of the interface is used. You learned
about the purpose of projects and how to set one up. You also
learned how to create a workspace and connect to your data plat‐
form. At the end of the chapter, you saw how to bring data sources
into your graph. At this point, you are ready to begin developing
your data.

However, before you begin building a data pipeline, it’s important
to understand the core concepts of how to develop your data in
Coalesce. In the next chapter, we’ll explore everything you need to
know to begin your journey building data pipelines and applying
all of the knowledge from this chapter, to the concepts of pipeline
development in Coalesce.

18 | Chapter 1: Getting Started in Coalesce

CHAPTER 2

Coalesce Core Concepts

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the con‐
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at mpot‐
ter@oreilly.com.

In the previous chapter we laid the foundation for your understand‐
ing of Coalesce components, such as projects, workspaces, and stor‐
age locations. In this chapter, we will lay the building blocks on top
of your foundation, by providing you with the core concepts that
empower Coalesce data development. You will learn why column-
aware architecture is important within data transformations, what
nodes are and how they harness column-aware architecture, the
data pipeline approach, and managing data development.

At the end of the chapter, you’ll walk away with the knowledge that
will provide you with the framework you need to understand and
develop your data on the platform. And there is no better place to
start than understanding column-aware architecture.

19

Column-aware Architecture
Data processing workloads in modern data platforms don’t just
operate on the scale of thousands of database tables; they run on
hundreds of thousands—even millions—of columns. Coalesce is
built from the ground up to automate data transformations while
keeping a code-first approach and flexible interface. This all starts
with a column-aware architecture.

But what is column-aware architecture? Column-aware architecture,
or being column-aware, is an approach to managing data trans‐
formation with an understanding of columns and how they are
connected. With this understanding, Coalesce provides automated
column-level lineage, while enabling the creation and maintenance
of database objects at scale. This column-aware architecture cap‐
tures metadata for each object created, allowing you to leverage
incredible development speed and agility in your data transforma‐
tion workloads.

By using column-aware architecture, Coalesce shifts the paradigm
of traditional data transformation processes to an automated, reus‐
able, and scalable approach. We’ll see how this translates to the
foundational building blocks of Coalesce (nodes), but first, let’s dig
deeper into the benefits of building a data transformation platform
using column-aware architecture.

Data Patterns
Column-aware architecture is the key to standardizing how trans‐
formations are applied, how tables are structured, and how columns
are logically connected. This standardization can be referred to as
a pattern, which is a reusable step in a data transformation process
that represents a logical transformation. This can include:

• Incremental & processing logic•
• Materialization logic•
• Deployment logic•

These data patterns are essential for the creation, management, and
accessibility of data, especially at enterprise scale. Coalesce provides
a platform to rapidly implement these data patterns by leveraging
metadata at the column level. With column-aware metadata, you

20 | Chapter 2: Coalesce Core Concepts

can build a single reusable data pattern that can be applied across
any of your data transformations.

Take, for example, a simple type 2 slowly changing dimension–an
industry standard for tracking historical data, such as a customer’s
current address and what it was six years ago, and every change
in between. Writing the complex SQL to deliver this functionality
could take hundreds of lines of code. Because Coalesce is column-
aware, this can be defined once and then reused as many times as
required without the need for writing the code each time.

In Coalesce, column-aware data patterns streamline complex, time-
consuming manual coding tasks. This speeds up data processing and
lets you focus on broader strategy while applying reusable logic with
confidence..

Impact Analysis and Lineage
Having data patterns is powerful, but if those patterns aren’t coupled
with the ability to understand and manage your entire pipeline in
one place, you may end up spending all of the time you saved
building patterns having to understand how changes impact your
pipeline. This is a second powerful benefit of using column-aware
architecture: this column-awareness enables complete impact analy‐
sis and lineage at the column level.

Imagine you’ve just deployed a pipeline that powers critical stake‐
holder dashboards. It’s Monday morning, and you wake up to an
email from your SaaS ETL provider: they’ve changed the schemas of
several tables in your pipeline. Panic sets in. Which columns in my
pipeline are impacted? Are dashboards already broken? How many
transformations are affected?

With column-awareness, you can quickly see how changes to your
data affect everything downstream as seen in Figure 2-1. You’ll
know exactly what’s been impacted and can fix issues before they
become problems. You can see exactly how each object and column
affects your pipeline at any moment, no guesswork or managing
dozens of SQL tabs.

Column-aware Architecture | 21

Figure 2-1. Column level lineage showing the impact of every column
throughout a pipeline.

Additionally, with column-awareness, you can perform bulk opera‐
tions directly at column granularity and across your data platform,
making source data changes or business logic changes easy and
straightforward to implement. For a data consumer, Coalesce pro‐
vides clear documentation at the column level, showing where the
data came from and how it was calculated. This transparency helps
build trust across the organization.

Scale and Governance
Column-awareness drives efficiency and accuracy in data manage‐
ment, even at scale—across hundreds of thousands of columns,
multiple teams, environments, and the entire business.

Column-aware state management minimizes the risk of data loss
and errors by enabling in-place, column-level modifications instead
of requiring full table re-creations. It also offers detailed column-
level visibility into changes over time, a critical aspect of effective
DataOps and governance practices.

For instance, in a deployment with thousands of columns, Coa‐
lesce eliminates the need to build complex architectures to handle
changes. Instead, you can manage in-place edits out of the box
This approach reduces costs, enhances deployment visibility and
planning, and fosters trust among data consumers throughout the
organization.

This column awareness enables column propagation, allowing you
to add or remove columns across the entire pipeline with ease

22 | Chapter 2: Coalesce Core Concepts

through the user interface. This functionality streamlines column
management across your project, making column awareness a core
advantage.

Now that you have an understanding of column-aware architecture
in Coalesce, let’s dive into the foundation of data development:
nodes.

Nodes
Nodes are the core components used to build data pipelines in Coa‐
lesce. In Chapter 1 we defined a node as a visual representation of an
object (table, view). Now that you have an understanding of pattern
based development, we can provide a more precise definition.

A node is a visual representation of an object within your data
platform as seen in Figure 2-2. It serves as a building block for
constructing data pipelines and leverages data patterns to automate
your data transformations. Nodes are classified as node types, such
as a stage or fact node type–more on this shortly!

Figure 2-2. Nodes in the build interface representing a data pipeline.

Nodes enable pattern-based development by allowing you to define
a transformation once and repeatedly apply it, streamlining automa‐
tion and ensuring consistency across your pipeline. You can begin to
see how leveraging nodes can accelerate development while ensur‐
ing quality and consistency across your pipelines, as everyone works
from a shared pattern or standard. To build effectively with nodes,
it’s essential to understand how node types are created and function.
Let’s take a closer look at what makes up a node.

Node Architecture
Node types consist of three components: a node definition, a create
template, and a run template. Each of these components performs a

Nodes | 23

specific role in the representation and execution of a node type. Let’s
start with the node definition.

Node definition
The node definition defines the attributes available within a node
type, such as naming conventions and node type colors. It also
specifies the UI elements used to configure each individual instance
of the node type. For example, if you want to build a stage node
type for creating a consistent staging layer in your pipeline, the
node definition would define the naming convention for the node
each time it’s used. However, each instance of the stage node can be
configured differently, based on the options provided through the
UI elements in the node’s configuration. Such as one stage node type
being materialized as a view and another being materialized as a
table.

The node definition is defined using YAML as seen in Figure 2-3.

Figure 2-3. YAML used in the node definition to define the attributes
of the node type.

The Coalesce documentation contains information on the configu‐
ration options available to include in your node definition YAML
file as seen in Figure 2-4.

24 | Chapter 2: Coalesce Core Concepts

https://docs.coalesce.io/docs/

Figure 2-4. Coalesce documentation representing the various configu‐
ration options for the node definition of a node type.

Once you have your node definition defined, you can configure the
Create and Run templates.

Create Template
The create template for a node type defines the logic used to
automate the creation of the object. Typically, this involves Data
Definition Language (DDL) that leverages attributes from the node
definition—such as the selected materialization type—to execute a
CREATE statement in SQL.

You can define create templates using a combination of SQL and
Jinja, as shown in Figure 2-5.

Nodes | 25

Figure 2-5. The create template representing the SQL and Jinja used to
automate your DDL.

After you define the logic, Coalesce runs the DDL for each object
instance in your pipeline. Executing the create template creates the
object in your cloud provider automatically.. It is important to note
that the create template is only creating the object, it is not loading
data into the object. In order to insert data into the object, you need
the run template!

Run Template
The final component of a node type is the run template. This
is where you define the logic to automate the execution of your
transformations. Typically, it involves Data Manipulation Language
(DML) that leverages Coalesce’s column-aware architecture to exe‐
cute SQL and populate objects with data.

Like create templates, run templates are defined using a combina‐
tion of SQL and Jinja as shown in Figure 2-6.

26 | Chapter 2: Coalesce Core Concepts

Figure 2-6. The run template representing the SQL and Jinja used to
automate your DML.

With the logic defined, Coalesce will automatically run the corre‐
sponding DML for each node type. This will populate the objects in
your data platform with data based on the logic and upstream data
coming from your data pipeline. It’s important to note that some
node types may not need a run template, such as a view node type,
which is just storing a query to be run in the future. A view is never
actually populated with data.

Now that you understand the components of a node type and how
you can create reusable patterns, let’s explore the advantages of
developing with nodes.

Importance of nodes
Up to this point, we’ve seen how column-aware architecture
drives pattern-based development, accelerating data transformations
within Coalesce. Now, it’s important to bring everything together
and understand how these concepts translate into more efficient
pipeline development.

Standardization
We’ve already discussed how node types establish a framework for
consistent data development across your team. Now, let’s delve into

Nodes | 27

why this standardization is essential for long-term, scalable pipeline
development.

Standardization ensures that everyone operates from the same foun‐
dation, automatically and consistently. There’s no need for new cus‐
tom code, special permissions, or isolated environments. A node
type is defined once, and it’s ready to use repeatedly without addi‐
tional setup.

This standardization enables your team to embed best practices
directly into the nodes. Each time a node runs, you can trust it to
perform exactly as intended. It also allows you to optimize your
code, ensuring that each instance of a node type runs efficiently and
minimizes compute resource usage within your data platform.

Standardization streamlines development by reducing repetitive
object creation and manual coding. This allows your team to focus
on data transformation and modeling rather than boilerplate setup.
By minimizing development overhead, you can build and deploy
pipelines more efficiently.

As discussed earlier, you can define a dimension node type to sup‐
port type 2 slowly changing dimensions (SCDs). Whenever you
need to implement a type 2 SCD, you can add the dimension node
to your pipeline and configure it with just a few clicks as seen in
Figure 2-7. In seconds, you can automate the execution of a type 2
SCD, eliminating the need to write code from scratch or manually
adapt copied code to your specific tables.

28 | Chapter 2: Coalesce Core Concepts

Figure 2-7. The configuration options for a dimension node, allowing
you to set up type 2 SCD capabilities in seconds.

Nodes | 29

By using standardization in your pipeline development, you gain all
of the advantages discussed here. This does not mean that you are
giving up flexibility, as you’ll see in the next section.

Flexibility
Coalesce provides multiple built-in node types, including a dimen‐
sion node with preconfigured Type 2 SCD options, to streamline
development. While these predefined options simplify automation,
data projects often require customization.

Coalesce supports both custom code and a GUI-driven interface
(Figure 2-8), allowing you to define node behavior precisely while
maintaining an efficient and user-friendly development experience.

Figure 2-8. Coalesce provides you the ability to define your own data
patterns and write custom SQL all through a power user interface.

Coalesce enables you to create User Defined Nodes (UDNs), allow‐
ing you to configure nodes tailored to the specific needs of your
data development. Additionally, Coalesce provides a variety of pre‐
built node types available on the Coalesce Marketplace, designed to
address a wide range of use cases. We’ll learn more about Coalesce
Marketplace in the next chapter.

Independent blocks of logic
You’ve likely encountered SQL transformations that span hundreds
of lines, filled with multiple CTEs and repetitive code that violates
the DRY (Don’t Repeat Yourself) principle. Coalesce node types are
designed to address this by breaking transformations into logical,
reusable blocks.

Instead of bundling multiple CTEs and subqueries into one sprawl‐
ing query, Coalesce allows you to handle each logical task in its own

30 | Chapter 2: Coalesce Core Concepts

node. This means each CTE in a large query can become a separate
node in your pipeline.

You might be thinking that building pipelines this way will result
in more objects compared to consolidating everything into a sin‐
gle query—and you’re right! But typically, this is only a problem
because more objects typically means more development time
and management. But, because Coalesce relies on standardized,
reusable nodes, the building process is incredibly fast. And with
column-aware architecture in place, managing a pipeline at any
scale becomes simple. As we’ll explore in the next section, there
are significant advantages to designing pipelines using this pipeline
approach rather than relying on complex CTEs.

The Pipeline Development Approach
Complex data processing often involves breaking tasks into sequen‐
tial steps, where the output of one step feeds into the input of
the next. While Common Table Expressions (CTEs) can achieve
this, Coalesce takes a modular, pipeline-based approach that offers
significant advantages over traditional CTE development.

Transparency
One of the primary benefits of a pipeline approach is improved
transparency. Instead of consolidating all logic into a single
query, Coalesce uses nodes to represent individual logical
blocks. This modularity makes it easy to navigate your pipeline
and understand the function of each step. Additionally, you
can run individual nodes independently to view their results in
context, simplifying analysis and debugging.

Troubleshooting
The transparency of pipeline logic also simplifies troubleshoot‐
ing. Debugging a monolithic SQL query with hundreds of lines
and multiple CTEs can be tedious and error-prone. In Coalesce,
each logical step is a standalone node, allowing for a more
straightforward process to identify and resolve errors or data
issues. This modular design reduces the overhead required to
troubleshoot and maintain data pipelines.

Testing
Coalesce facilitates out of the box and SQL-based testing in
each node in the pipeline as shown in Figure 2-9. For example,

The Pipeline Development Approach | 31

you can validate uniqueness, check for null values, or run other
data quality checks at any step. By catching unsupported data or
logical errors early in the pipeline, you can prevent issues from
propagating to downstream processes, saving time and effort.

Figure 2-9. Out of the box tests that can be applied easily to any
column in the node.

Developing pipelines in this way allows complete control over each
element, while providing a streamlined approach to development.

Reusability
Breaking a data pipeline into nodes promotes reusability of logic
across the pipeline. For instance, if you create a node to deduplicate

32 | Chapter 2: Coalesce Core Concepts

records in an orders table, downstream nodes can reference and
reuse this logic without reprocessing. This eliminates redundant
computation and ensures consistency across the pipeline.

In contrast, using CTEs often requires duplicating logic across mul‐
tiple queries, which is harder to manage and less efficient.

Developing with a pipeline approach offers substantial advantages
in transparency, troubleshooting, testing, and reusability. While this
method may result in more objects in your data platform, Coalesce’s
column-aware architecture and node standardization make manag‐
ing pipelines of any size seamless and efficient.

The Development Workflow
So far, we’ve explored the fundamentals of nodes and the advantages
of building pipelines with them in Coalesce. But what does the
actual development workflow look like? While we’ll dive deeper into
pipeline construction in the next chapter, there are two essential
concepts to understand for developing your data in Coalesce: work‐
space development and environments.

Workspace Development
Each workspace in Coalesce comes with a build interface
designed for data development. When working within a work‐
space, each user will have their own set of credentials. Typically,
development occurs in a sandbox or personal space within your
data platform. This means that any objects you create are iso‐
lated to your storage location, allowing you to experiment and
iterate without impacting shared environments.

Think of a workspace as your personal sandbox for developing
and testing data pipelines. Once you’ve finalized your pipeline,
you can deploy your work to an environment for broader use.

Environments
Coalesce provides the use of environments for deploying data
pipelines, allowing for a structured workflow from development
to production. After finalizing changes in the workspace, com‐
mit them to a Git branch and deploy to the target environment.

Environments in Coalesce are tied to designated locations in
your data platform, such as specific databases or schemas
through storage locations and storage mappings. For best prac‐

The Development Workflow | 33

tices, Coalesce supports multiple environments, such as QA
and PROD, allowing you to test and validate your work before
deploying it to production. Figure 2-10 illustrates an example of
a typical environment setup.

Figure 2-10. The deploy interface in Coalesce, where you can deploy
your pipelines to higher environments in your data platform.

Knowledge Sync Complete
You are now equipped with the foundational knowledge needed to
start developing your data in Coalesce. In this chapter, we covered
column-aware architecture, how it supports pattern-based develop‐
ment through nodes, and why nodes serve as the optimal building
blocks for building pipelines.

If you encounter challenges as you progress through this guide, feel
free to revisit Chapters 1 and 2 for a refresher.

Up next, we’ll walk you through the process of building a data
pipeline—from data source to insight-ready tables. See you in the
next chapter!

34 | Chapter 2: Coalesce Core Concepts

CHAPTER 3

Building Data Pipelines in Coalesce

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the con‐
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at mpot‐
ter@oreilly.com.

So far, you’ve spent time learning to set up Coalesce and explored
core components and concepts of the platform, such as projects,
workspaces, node types, storage locations and mappings, and
column-aware architecture. In this chapter, you’ll put this knowl‐
edge to work by learning how to build data pipelines in Coalesce.

In this chapter you’ll learn how to add data sources, create nodes,
and write SQL to transform data directly within any node. You’ll
also master functionality like creating joins, bulk-editing columns,
and applying tests to ensure data quality. Plus, you’ll discover how
Coalesce Marketplace enhances your pipeline with powerful exten‐
sions.

Let’s get started!

35

The Build Interface
In Chapter 1, you briefly learned about the Build Interface, which
is where you will be spending your time in this chapter. The Build
Interface is where you will develop your data products and build
node graphs and pipelines. You can assess it by launching any work‐
space from the projects page as seen in Figure 3-1.

Figure 3-1. The Build Interface in Coalesce, displaying nodes organized
in the form of a pipeline.

The Build Interface contains all of the necessary components to
build data pipelines. In the sidebar in the upper left side of the
interface, you’ll see navigation options for Nodes, Subgraphs, and
Jobs. You’ll learn about subgraphs and jobs more in chapter 4, as the
focus of this chapter is on building pipelines with nodes.

In the lower left corner of the sidebar, you’ll have navigation for
your Problem Scanner, which will alert you on any issues or notifi‐
cations you should be aware of within your data pipeline. You’ll
also be able to access your Git Integration to easily version control
your work. Finally, you’ll see the Build Settings cog, which contains
all of the settings for the workspace you are building in, as seen
in Figure 3-2, such as the storage locations you learned about in
Chapter 1. Throughout the rest of this guide, we’ll explore each of
the items located in the Build Settings so don’t worry if you don’t
know what each of these items mean.

36 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-2. The Build Settings available in each Workspace in Coa‐
lesce.

The Build Interface also contains the Workspace Settings for the
workspace you are working in. You learned all about the Workspace
Settings in Chapter 1, when we discussed connecting to your data
platform, but you can easily access those settings from the Work‐
space Settings Cog in the upper left corner of the screen, as seen in
Figure 3-3. You can also find them in the Workspace line item in the
Build Settings.

The Build Interface | 37

Figure 3-3. The Workspace Settings cog, which allows you to configure
your workspace settings.

When it comes to building data pipelines, you’ll do this work within
the Browser, which is where your Directed Acyclic Graph (DAG)
and nodes in your pipeline are displayed, as shown earlier in Fig‐
ure 3-1.

Now that you’re familiar with the essential elements of the Build
Interface, it’s time to start building data pipelines. First up: data
sources.

Adding Data Sources
Data sources are a core component to any data pipeline—after all,
you can’t build a pipeline without a source. Adding data sources in
Coalesce is simple and straight forward. In the upper left corner
of the Build Interface, select the plus “+” button, and choose Add
Sources. This will open the Data Sources modal, which will display
all of the storage locations configured in the Workspace.

38 | Chapter 3: Building Data Pipelines in Coalesce

Each line item is a Storage Location that is pointing to a database
and schema. You can see in Figures 3-4 and 3-5 how the Storage
Mappings for each Storage Location correspond to the data sources
available in the modal.

Figure 3-4. storage mappings in the workspace settings, pointing your
storage locations to the database and schema in your data platform
where your data exists.

Figure 3-5. The same storage locations and mappings showing up in
the data sources selector.

By selecting any of the Storage Locations available, you can view
all of the objects available to use within Coalesce. For example, in
Figure 3-6, you can see there are eight objects available that we
could addinto our pipeline.

Adding Data Sources | 39

Figure 3-6. Selecting the data sources from the data sources modal.

You can either select the specific objects you need, or select all of
them by selecting the checkbox next to the Storage Location name.
You can select as many objects between any of the available storage
locations. Once you have selected all of the objects you want to add
to your pipeline as data sources, select the Add X Sources button
in the lower right corner of the modal, where the X represents the
number of objects selected.

Coalesce will automatically add all of the objects you selected into
the browser of the Build Interface as seen in Figure 3-7. Source
Nodes are represented by a dark orange color – as every node has a
unique color. This is consistent for any source node added into your
Workspace.

40 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-7. Data sources being displayed in the Browser.

With your data sources added into your Workspace, you can now
begin transforming this data by using Node Types – whether out of
the box, custom node types, or, as we’ll see later in this chapter, from
Coalesce Marketplace.

Adding Nodes to Your Pipeline
At the core of the developer experience in Coalesce is the ability
to quickly add nodes to your data pipeline and start transforming
data with ease. Nodes can be added directly from the platform
or through Coalesce Marketplace. Because each node follows a
standardized structure, the anatomy remains consistent across your
pipeline, creating a predictable and unified experience for every
developer. Coalesce includes several built-in Node Types to help you
move faster right out of the gate:

Adding Nodes to Your Pipeline | 41

• Stage•
• Persistent Stage•
• Dimension•
• Fact•
• View•

You can right click on any of the source nodes and hover over Add
Node to view these nodes as shown in Figure 3-8. Let’s explore each
of the node types below.

Figure 3-8. Node Types available to add to a data pipeline.

Stage
A Stage Node Type in Coalesce allows you to develop and deploy
work in a table or view. It provides an intermediary working or
staging layer to store, prepare, and transform raw data before down‐

42 | Chapter 3: Building Data Pipelines in Coalesce

stream tables in your data pipeline use these data. This staging layer
is a common data engineering practice for preparing your data.
Just as a cook needs to prepare raw ingredients such as carrots and
onions by slicing and dicing them before cooking, you can think of
Stage Node Types as the preparation layer.

Stage Node Types are by default set to truncate the data in your
table during each execution. This means that all data is deleted from
the table and the fresh data coming from the upstream node will
be processed into the Stage node. If the truncation is deactivated,
the execution nature of the node would be to append data to the
underlying table.

Persistent Stage
Similar to a Stage, a Persistent Stage is an intermediary Node Type
that provides data persistence across execution cycles. Unlike a Stage
Node Type, a Persistent Stage contains a business key allowing you
to determine the unique identifier for your data source, which, in
turn, allows you to persist or store historical data and load net new
records into the object. This functionality is particularly beneficial
when the objective is to retain historical data for prolonged dura‐
tions.

Dimension
Coalesce supports Type 1 and Type 2 Slowly Changing Dimensions
(SCD) out of the box. Each Dimension requires a business key,
or unique identifier, to be defined. You then have the option of
defining changing tracking columns, which will automatically con‐
figure the object as a Type 2 SCD when columns are selected. This
functionality is particularly beneficial in tracking changes to the
dimensions (data that describe your facts) in your data.

For example, you may want to know any time your customer’s
address changes when data is loaded from your sales data source.
You can simply select the address column in your data source as a
change tracking column, and Coalesce will automatically generate
best practice Type 2 SCD Structured Query Language (SQL) within
your data platform, saving you hours of developing time.

Adding Nodes to Your Pipeline | 43

Fact
Fact Node Types provide you the ability to develop and deploy
tables containing the measures or facts in your data platform. Each
Fact Node Type contains a business key as well as functionality
around varying operations for working with measures i.e. revenue,
cost of goods sold, profit, etc. By using Fact Node Types, you can
easily distinguish your Fact and Dimension nodes in the Browser
when looking at your DAG.

View
By default, the View Node Type is turned off when using Coalesce
for the first time. You can enable it by going to the Build Settings
and selecting Node Types and turning on the Enable toggle for the
View Node Type. This Node Type allows you to create objects as a
view in your data platform, which means it is not storing any data,
while also providing the flexibility to write custom SQL directly into
the SQL editor.

While these five Node Types listed come out-of-the box, Coalesce is
not limited to just these Node Types. As we learned in Chapter 2,
you have the ability to create your own Node Types, and as we’ll see
next, use any of the Nodes from Coalesce Marketplace.

Coalesce Marketplace
Coalesce Marketplace provides a wide array of packages that help
bring extensibility to your data pipeline projects. These packages are
composed of one or more Node Types that help you solve specific
problems or provide functionality to accelerate data development as
seen in Figure 3-9.

44 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-9. Packages available on Coalesce Marketplace that can be
added to your Workspace.

Any package with the blue certified checkmark means that Coalesce
has certified the package for production environments. Packages
that don’t include the checkmark are often developed by other
engineers or organizations and are not guaranteed to work in all
situations. You can see an example of this in Figure 3-10.

Figure 3-10. A Package that has been certified by Coalesce with the
blue checkmark and a package that has not been certified.

Adding Nodes to Your Pipeline | 45

You can easily install any of the Node Types from a package by
selecting the “Find out more” button on any package. Within the
package is a Package ID, and this package ID is how the package is
installed within Coalesce.

When inside the Build Settings, you will see the Packages settings.
Within the packages settings, you will see the option to either
Browse or Install packages, as seen in Figure 3-11. The Browse but‐
ton will open a new tab and take you to Coalesce Marketplace where
you can view all of the packages available to install. The Install
button allows you to install a package by providing the Package ID
of the package from Coalesce Marketplace.

Figure 3-11. The Browse and Install buttons in the upper right corner
of the Packages settings.

When installing a package, you will provide a package ID, version
of the package, and an alias. By default, the package will install
as the latest version, but you can manually change the version to
any previously supported version. The alias of the package is the
name or alias under which the Node Types will be displayed in
the Browser, as seen in Figure 3-12 and 3-13. Each Node Type that
is installed from the package will be displayed in the Node Type
settings within the Build Settings of your Workspace. You can then
add these Node Types to your pipeline just the same as any other
Node Type.

46 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-12. Providing an alias when installing a package.

Figure 3-13. How the alias shows up when you add nodes in the
Browser.

Whether they are out-of-the box, from Coalesce Marketplace, or
custom, you’ll use the same method to add all Node Types to your
data pipeline. Let’s learn how to begin building on our data sources
using different Node Types.

Putting Node Types to Work
As we discussed earlier in this chapter, a common pattern of data
engineering is to create a staging layer to prepare your data for the

Adding Nodes to Your Pipeline | 47

needs of your business users. To do this in coalesce, we can use the
Stage Node Type. You can select any node, including source nodes,
in Coalesce and right click on the node and hover over Add Node to
view all of the Node Types available to add to your data pipeline. In
this case, select Stage.

Coalesce will add a green Stage Node Type to the Browser and
will automatically add a prefix to the node: STG_, as seen in Figure‐
Image 3-14. This naming convention provides an additional way to
easily see the Stage nodes in your Browser.

Figure 3-14. The Stage Node Type with the STG_ prefix applied to each
node

As you learned about in Chapter 2, Coalesce uses data patterns to
provide the templates making up each Node Type. Because each
Node Type is a standardized object, you can add them to your
pipeline the same way. This also means that you can add them in
bulk to multiple objects, since the standard never changes.

In the Browser, you can see multiple nodes selected at once. By
right clicking on any of the nodes selected, you can hover over Add
Node and, to complete our staging layer, select Stage. Coalesce will
automatically add a Stage Node Type to each data source as seen in
Figure 3-15, allowing your team to immediately begin transforming
your data, without having to configure the code of each object
individually.

48 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-15. Bulk adding Stage nodes to the data pipeline

You can add any other Node Type available in your Workspace the
same way that you added Stage Node Types. For instance, you can
add a dimension node by right clicking on the STG_CUSTOMER
node and selecting Dimension, as shown in Figure 3-16.

Adding Nodes to Your Pipeline | 49

Figure 3-16. STG_CUSTOMER node with a dimension node as a
dependency.

You can continue this process for every object needed to develop
your data in your pipeline. As you add nodes to your pipeline, you
will need to configure them to help you provide solutions to the
problems you are solving. In order to do this, you will need to
understand the anatomy of a node.

The Anatomy of a Node
In Chapter 2, we discussed how a Node Type is created (Node
Definition, Create Template, Run Template). In this chapter, you
will learn about the basic anatomy of a node, so you can effectively
work with any Node Type. Whenever you double click on a Node in
the Browser, it will open the Node Editor. While the configuration
options (which you’ll learn about shortly) may be different, the basic
anatomy of each node is the same. Let’s dive into this a bit deeper.

The Mapping Grid
When opening a node for the first time, you’ll immediately see
the mapping grid, as shown in Figure 3-17. The mapping grid is
the display of all of the columns, including the name, data type,
transformations, and even comments that are inherited from the
parent node(s) in the DAG. You can easily add new columns, apply
transformations, change data types, and apply a multitude of other
operations in the mapping grid.

50 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-17. The mapping grid of the STG_CUSTOMER node.

Every node in your DAG will contain a mapping grid, even if it only
includes a single column or line item, and is your way of knowing
which columns you are working with.

The Configuration Options
Each Node Type contains configuration options that are unique to
that Node Type. For example, the Dimension Node Type contains
configuration options such as a Business Key and Change Track‐
ing columns, which is different from a Stage Node Type which
contains other configuration options. The configuration options of
each Node Type allow users to accelerate their data development
by reusing what has already been created as a standard. This is
why configuration of a Type 2 SCD saves hours of time for data
developers in Coalesce, because you can configure with just a few
clicks, while automatically generating 100s of lines of SQL for you.

You can view the configuration options of any node in the Config
tab in the upper right corner of the Node Editor as seen in Fig‐
ure 3-18.

Adding Nodes to Your Pipeline | 51

Figure 3-18. The configuration options of a node, providing the ability
to configure a node without having to write code.

52 | Chapter 3: Building Data Pipelines in Coalesce

Create and Run
A critical part of developing data pipelines in Coalesce is the ability
to create and run nodes. But what does that mean? When adding a
node to your pipeline in Coalesce, the node is not immediately cre‐
ated in your data platform i.e. Snowflake. You as the data developer
need to create the object in your data platform. The Create and Run
buttons allow you to create objects and then execute any action on
the object. Let’s break this down in an example.

When working with a Stage node, you have the ability to materialize
the object as either a table or a view. Let’s assume you choose to
build your object as a table. In order for the object to be created
in your data platform, you need to select the Create button. In
doing so, Coalesce will automatically take all of the metadata about
the node, and automatically generate the Data Definition Language
(DDL) for the object and create a blank object in your data platform.
Coalesce will use the name of the node as the name of the object in
your data platform as shown in Figures 3-19 and 3-20.

Figure 3-19. Name of the object in Coalesce.

Adding Nodes to Your Pipeline | 53

Figure 3-20. The same object created with the same name in your data
platform.

Once the Stage is created as a table in your data platform, it is
still empty. This is where the Run button comes in. By selecting
Run within the node, Coalesce will again take all of the metadata
provided from the node (column names, transformations, config‐
urations, etc.), and automatically generate the Data Manipulation
Language (DML) for the object, to insert data into the table. You’ll
be able to see the output of the operation in the Data Preview pane,
which will display any data available after a successful run.

This is how Coalesce acts as the interface between your data plat‐
form and your raw data. Now you may be thinking that if you need
to manually create and run each node, that is not a particularly
sustainable approach to pipeline development, and you would be
right! In Chapter 4, you will learn about deployments, and how
you can automatically schedule your data pipelines to refresh, which
effectively runs any of the Create and Run operations as needed.

The Join Tab
Each node type contains a Join Tab. This is located next to the
mapping grid, as shown in Figure 3-21. Within the Join Tab, you
will notice that there is a line of SQL already in the editor. The SQL
shows a FROM statement with a REF function nestled within some
curly braces. This line of SQL is creating the dependency to the
upstream or parent node i.e. the REFerence to the parent.

54 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-21. The Join Tab next to the mapping grid.

Within the Join Tab, you can perform multiple operations such as
joins, filters, and even window functions. The Join Tab is often used
for applying transformations to the object as a whole, rather than a
singular column. We’ll dig into the Join Tab more shortly, but for
now, you only need to know where it is and what it can do.

You may notice a few other options within each node, and we’ll get
to those later in the chapter, but now it’s time to get to the core of
what nodes are doing, transforming data!

Data Transformations in Coalesce
In this section, I will provide a general overview of core data trans‐
formation functionality in Coalesce, but know that there are virtu‐
ally an unlimited number of ways you can transform your data in
Coalesce using various Node Types and settings. To cover the basics,
I’ll focus on column level and node level transformations.

Column Level Transformations
To kick things off, let’s start with column level transformations.
These are applied to individual columns within the mapping grid
and are written using any valid SQL expression supported by your
cloud platform. Let’s look at an example.

Data Transformations in Coalesce | 55

In the node in Figure 3-22, we are applying an UPPER() function to
a variable character column in order to apply consistent text casing
across the field.

Figure 3-22. Applying a column level transformation to a column in
the mapping grid.

While this is a relatively simple example of a column level transfor‐
mation, you can probably begin to see the ease of management
for writing transformations in this way, such as the column level
transformations shown within Figure 3-23.

56 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-23. Multiple column transformations easily managed in the
mapping grid.

Column level transformations can be quite complex, such as nested
CASE WHEN statements that contain aggregate functions. Effec‐
tively, if you could write the column level transformation in your
data platform, you’ll be able to write it within Coalesce.

Each column level transformation will contain the name of the
column being transformed, as well as the upstream dependency of
that column. In this way, you are listing the full table and column
reference to provide the metadata to generate the transformation
code automatically for you.

It’s important to note that column level transformations are only
transforming singular columns. You will not be able to filter an
entire table in a column level transformation, that is where you
would use the Join Tab.

Node Level Transformations
Using the Join Tab, you can apply table or node level transforma‐
tions to your data. Let’s assume you’ve transformed all of your
columns and are ready to apply any SQL necessary to support
the logic of the table. For example, maybe you used an aggregate
function and now need to supply a GROUP BY—you can supply
this in the Join Tab. Maybe you’re working with sales data for an

Data Transformations in Coalesce | 57

Ecommerce organization and only want to view sales where the
order is delivered—you could apply the filter in the Join Tab. You
can see examples of these in Figure 3-24. Effectively, if you need to
apply any SQL at the table level, you should apply it in the Join Tab.

Figure 3-24. Writing SQL to configure the node at the node level.

Whether you are using column level transformations or transform‐
ing data at the node level, you can use any SQL supported by your
data platform to do so. There is no proprietary syntax limiting your
ability to write SQL or use a different language, you can just plug
and play. Now that you’re familiar with the Join tab, let’s explore its
namesake–the join itself!

Joins
Up until this point, we have been working with and transforming
data in single nodes. But what happens when you want to join
multiple nodes together? Coalesce makes this just as easy as adding
a node to your data pipeline.

In the Browser, you can select two or more nodes you want to
join together. Once selected, you can right click on either node
and hover over Join Nodes, and you will see all of the options
available for adding a node, but now available as a joined node. In

58 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-25, the STG_ORDERS and STG_LINEITEM nodes can be
joined together as a new Stage Node Type. Figure 3-26 shows the
result of a join in the Browser

Figure 3-25. Applying a join using the Join Nodes option in the
Browser of Coalesce.

Figure 3-26. The result of the Join Nodes option in the Browser.

Once the joined Stage node is selected, Coalesce will automatically
drop you into the Node Editor. To configure the join, navigate to the
Join Tab. You will see a join statement that Coalesce has automati‐
cally generated for you. In most cases, all you need to do is provide
the join condition i.e. the column names used to join the tables
together. This can be done by removing the placeholders shown in
Figure 3-27 and replacing them with the column names needed to
configure the Join as shown in Figure 3-28.

Joins | 59

Figure 3-27. Column placeholders in the Join Tab for join conditions.

Figure 3-28. Configuration of the join in the table with the proper
column condition

As you learned earlier, when it comes to table level transformations,
we could always add another join condition if necessary as shown in
Figure 3-29.

Figure 3-29. Adding another join condition showing flexibility of SQL
editor.

Coalesce automatically infers when a join is occurring. If you hap‐
pen to delete or break your code, you can always have Coalesce
regenerate the join. In the upper right corner of the Join Tab
SQL editor, you’ll see the Generate Join dropdown, as shown in
Figure 3-30, which allows you to regenerate the code back in the
SQL editor, or copy directly to your clipboard.

60 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-30. The automatic join generation that Coalesce provides in
each node.

This same process can be used to join any number of nodes together,
making it simple and easy to manage even the most complex joins.

Once tables have been joined, there are often many columns that
need additional work—whether it is renaming, changing data types,
or applying transformations. In Coalesce, you can handle these tasks
efficiently using the bulk editor, which you will learn about next.

Bulk Editing
Joins can cause the need for you to deal with multiple columns
at once. In traditional data development scenarios, you may be
required to manually delete columns one by one, or apply transfor‐
mations to one column at a time. But because Coalesce uses data
patterns and metadata to accelerate your data development, you can
bulk edit columns straight from the mapping grid.

Let’s assume you’ve joined the two nodes together from our previ‐
ous example. You now have multiple columns containing variable
character data types. In the case where you want to apply consistent
text casing like our example from earlier, you can bulk add this
transformation to each column you select, and only write the trans‐
formation one time.

Bulk Editing | 61

If you were to select all of the VARCHAR columns in the node and
right click on any of the columns, you could select Bulk Edit, as
shown in Figure 3-31. This would open the Column Editor next to
the configuration options you learned about at the beginning of the
chapter.

Figure 3-31. FigureImage 3-31. Selecting columns in bulk in order to
bulk edit them.

You could then select the attribute you wanted to transform, such as
the column names, data types, or transformations. For our example,
we’ll choose transformation and write a simple UPPER() function
that can be applied to each column as shown in Figure 3-32. You’ll
learn about the token in Chapter 4, but for now know that it auto‐
matically resolves the column in any transformation!

62 | Chapter 3: Building Data Pipelines in Coalesce

Figure 3-32. The bulk column editor, applying the UPPER function to
multiple columns as a transformation.

An attribute of a column can be bulk transformed in this way. Addi‐
tionally, if we were to want to remove multiple columns, we could
easily select all of the columns we wanted to delete, right click on
any of the selected columns, and select Delete Columns, as shown in
Figure 3-33.

Figure 3-33. Bulk deleting columns from the mapping grid.

By allowing users to work with columns in bulk, Coalesce makes
it easy to update multiple fields at once—saving time and letting
developers focus on higher-value work.

Bulk Editing | 63

Data Transformation in Process
There was quite a lot of information to digest in this chapter. You
learned about the Build Interface and all of the components it con‐
tains. You learned all about adding data sources and how to add
Nodes to your pipeline, including the many different kinds of Node
Types available to you. You also learned about the anatomy of a
node and how to use SQL to transform data inside of any node,
while also joining nodes together and applying bulk updates. Whew!

Coalesce is no less powerful because it leads with a user interface. In
fact, it enhances efficiency by standardizing the way work is done,
ensuring everyone builds from the same foundation. And when you
need to write SQL, it is always available. A visual interface does not
limit capability—it amplifies it.

In the next chapter, you’ll take your new data transformation skills
and sharpen them by learning how to manage the data pipelines
you build in Coalesce. You’re quickly becoming a data developing
master.

64 | Chapter 3: Building Data Pipelines in Coalesce

About the Author
Josh Hall is a data engineer and product marketer that loves to
help others learn, explore, and understand the power and impact
of the world of data. He spends much of his time creating video
content to help others understand technology, writing blogs to distill
technical concepts, and traveling to speak at data conferences and
user groups. With over half a decade of data consulting experience
under his belt, and several more years with data products, Josh
wants to take all of his hard earned knowledge and allow others to
expedite and amplify their data journey.

	Cover
	Coalesce
	Copyright
	Table of Contents
	Brief Table of Contents (Not Yet Final)
	Chapter 1. Getting Started in Coalesce
	The User Interface
	The Projects Page
	The Build Interface
	The Deploy Interface
	The Docs Interface
	The User Menu

	Projects
	The Purpose of Projects
	How to Set Up a Project

	Workspaces
	Build Settings
	Workspace Settings

	Storage
	Storage Locations
	Storage Mappings

	Adding Users
	Adding Data Sources
	Building on Your Foundation

	Chapter 2. Coalesce Core Concepts
	Column-aware Architecture
	Data Patterns
	Impact Analysis and Lineage
	Scale and Governance

	Nodes
	Node Architecture
	Importance of nodes

	The Pipeline Development Approach
	Reusability

	The Development Workflow
	Knowledge Sync Complete

	Chapter 3. Building Data Pipelines in Coalesce
	The Build Interface
	Adding Data Sources
	Adding Nodes to Your Pipeline
	Stage
	Persistent Stage
	Dimension
	Fact
	View
	Coalesce Marketplace
	Putting Node Types to Work
	The Anatomy of a Node

	Data Transformations in Coalesce
	Column Level Transformations
	Node Level Transformations

	Joins
	Bulk Editing
	Data Transformation in Process

	About the Author

